|   | 
Details
   web
Records
Author Pich, A.; Rosell, I.; Santos, J.; Sanz-Cillero, J.J.
Title Fingerprints of heavy scales in electroweak effective Lagrangians Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 012 - 60pp
Keywords Beyond Standard Model; Chiral Lagrangians; Higgs Physics; Technicolor and Composite Models
Abstract The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R), which couples the known particle fields to heavier states with bosonic quantum numbers J(P) = 0(+/-) and 1(+/-). We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
Address [Pich, Antonio; Santos, Joaquin] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apt Correus 22085, E-46071 Valencia, Spain, Email: pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000398449400004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3074
Permanent link to this record
 

 
Author LIGO Sci, Virgo, ANTARES and other Collaborations (Abbott, B.P. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Multi-messenger Observations of a Binary Neutron Star Merger Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 848 Issue 2 Pages (up) L12 - 59pp
Keywords gravitational waves; stars: neutron
Abstract On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Address [Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S.; Blackburn, J. K.; Blair, C. D.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T. A.; Cepeda, C. B.; Coughlin, M. W.; Couvares, P.; Coyne, D. C.; Ehrens, P.; Eichholz, J.; Etzel, T.; Feicht, J.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Heptonstall, A. W.; Isi, M.; Kamai, B.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Markowitz, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Nevin, L.; Pedraza, M.; Perreca, A.; Price, L. R.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Sanchez, L. E.; Schmidt, P.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Verkindt, D.; Vetro, F.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R. D.; Willke, B.; Wipf, C. C.; Xiao, S.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000413211000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3354
Permanent link to this record
 

 
Author Otten, S.; Rolbiecki, K.; Caron, S.; Kim, J.S.; Ruiz de Austri, R.; Tattersall, J.
Title DeepXS: fast approximation of MSSM electroweak cross sections at NLO Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 1 Pages (up) 12 - 9pp
Keywords
Abstract We present a deep learning solution to the prediction of particle production cross sections over a complicated, high-dimensional parameter space. We demonstrate the applicability by providing state-of-the-art predictions for the production of charginos and neutralinos at the Large Hadron Collider (LHC) at the next-to-leading order in the phenomenological MSSM-19 and explicitly demonstrate the performance for pp ->(chi) over tilde (+)(1)(chi) over tilde (-)(1), (chi) over tilde (0)(2)(chi) over tilde (0)(2) and (chi) over tilde (0)(2)(chi) over tilde (+/-)(1) as a proof of concept which will be extended to all SUSY electroweak pairs. We obtain errors that are lower than the uncertainty from scale and parton distribution functions with mean absolute percentage errors of well below 0.5% allowing a safe inference at the next-to-leading order with inference times that improve the Monte Carlo integration procedures that have been available so far by a factor of O(10(7)) from O(min) to O(mu s) per evaluation.
Address [Otten, Sydney; Caron, Sascha] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000513271500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4279
Permanent link to this record
 

 
Author Hernandez, P.; Lopez-Pavon, J.; Rius, N.; Sandner, S.
Title Bounds on right-handed neutrino parameters from observable leptogenesis Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (up) 012 - 58pp
Keywords Baryo-and Leptogenesis; Early Universe Particle Physics; Sterile or Heavy Neutrinos
Abstract We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.
Address [Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: m.pilar.hernandez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000914640400003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5467
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Limits on the nuclearite flux using the ANTARES neutrino telescope Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages (up) 012 - 19pp
Keywords dark matter detectors; neutrino detectors
Abstract In this work, a search for nuclearites of strange quark matter by using nine years of ANTARES data taken in the period 2009-2017 is presented. The passage through matter of these particles is simulated taking into account a detailed description of the detector response to nuclearites and of the data acquisition conditions. A down-going flux of cosmic nuclearites with Galactic velocities (beta = 10(-3)) was considered for this study. The mass threshold for detecting these particles at the detector level is 4 x 10(13) GeV/c(2). Upper limits on the nuclearite flux for masses up to 10(17) GeV/c(2) at the level of similar to 5 x 10(-17) cm(-2) s(-1) sr(-1) are obtained. These are the first upper limits on nuclearites established with a neutrino telescope and the most stringent ever set for Galactic velocities.
Address [Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001090397800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5790
Permanent link to this record