Marginean, R., Rusu, C., Marginean, N., Bucurescu, D., Ur, C. A., de Angelis, G., et al. (2012). High-spin structure of Pd-95. Phys. Rev. C, 86(3), 034339–9pp.
Abstract: The level scheme of the neutron-deficient nucleus Pd-95 has been studied with the Ni-58 + Ca-40 fusion-evaporation reaction at 135 MeV with the GASP gamma-ray array, the ISIS silicon ball, and the N-ring neutron detector. Excited levels with spins at least up to 45/2 (h) over bar are reported for both parities. The observed experimental data are compared to large-scale shell-model calculations.
|
Jungclaus, A. et al, & Montaner-Piza, A. (2020). Evolution of proton single-particle states in neutron-rich Sb isotopes beyond N=82. Phys. Rev. C, 102(3), 034324–11pp.
Abstract: The beta decay of the semimagic Sn isotopes Sn-136,Sn-137,Sn-138 has been studied at the Radioactive Isotope Beam Factory at the RIKEN Nishina Center. The first experimental information on excited states was obtained for Sb-137 while, in the case of Sb-136, the established excitation scheme could be extended by ten previously unidentified levels. In the decay of the most-neutron-rich isotope Sn-138, two gamma rays were observed for the first time. The new experimental results, in combination with state-of-the-art shell-model calculations, provide the first information with respect to the evolution of the Og(7/2) and 1d(5/2) proton single-particle states with increasing neutron number beyond N = 84.
|
de Angelis, G. et al, & Gadea, A. (2012). Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N = Z nucleus As-66 and neighboring T=1 multiplets. Phys. Rev. C, 85(3), 034320–7pp.
Abstract: Excited states of the N = Z = 33 nucleus As-66 have been populated in a fusion-evaporation reaction and studied using gamma-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T = 1 states. A new 3(+) isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T = 1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A = 70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.
|
PreSPEC and AGATA Collaborations(Ralet, D. et al), Domingo-Pardo, C., Gadea, A., & Huyuk, T. (2017). Lifetime measurement of neutron-rich even-even molybdenum isotopes. Phys. Rev. C, 95(3), 034320–11pp.
Abstract: Background: In the neutron-rich A approximate to 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the gamma ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a gamma-ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: tau = 29.7(-9.1)(+11.3) ps for the 4(+) state of Mo-108 and tau = 3.2(-0.7)(+ 0.7) ps for the 6(+) state of Mo-102. Conclusions: The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for Mo-108 which may be related to its well-pronounced triaxial shape indicated by the calculations.
|
Moon, B. et al, & Montaner-Piza, A. (2021). Nuclear structure of Te isotopes beyond neutron magic number N=82. Phys. Rev. C, 103(3), 034320–15pp.
Abstract: Newly observed decay schemes of the nuclei Sb-137 and Sb-138 are reported. The neutron-rich Sb isotopes were produced by the in-flight fragmentation of a U-238 primary beam with an energy of 345 MeV/nucleon. Several new excited states of Te-137 with tentatively assigned spin-parities of (5/2(-)), (9/2(-)), and (7/2) have been established which play an important role in the evolution of neutron levels beyond N = 82. The study of the beta decay of Sb-138 led to a considerable extension of the level scheme of Te-138 including the identification of several nonyrast states. The structure of Te-137 and Te-138 is discussed on the basis of large-scale shell-model calculations performed using two different effective interactions.
|