toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S. url  doi
openurl 
  Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages (down) 044 - 18pp  
  Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics  
  Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.  
  Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000742012500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5079  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R. url  doi
openurl 
  Title MSSM forecast for the LHC Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (down) 043 - 48pp  
  Keywords Beyond Standard Model; Supersymmetric Effective Theories  
  Abstract We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M-Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e(+)e(-) data) is considered, the preferred region (for μ> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-mu possibilities.  
  Address [Eugenia Cabrera, Maria; Alberto Casas, J.] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278251300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 435  
Permanent link to this record
 

 
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I. url  doi
openurl 
  Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (down) 043 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540500300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4430  
Permanent link to this record
 

 
Author Belanger, G.; Bharucha, A.; Fuks, B.; Goudelis, A.; Heisig, J.; Jueid, A.; Lessa, A.; Mohan, K.A.; Polesello, G.; Pani, P.; Pukhov, A.; Sengupta, D.; Zurita, J. url  doi
openurl 
  Title Leptoquark manoeuvres in the dark: a simultaneous solution of the dark matter problem and the R-D(*) anomalies Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (down) 042 - 58pp  
  Keywords Beyond Standard Model; Heavy Quark Physics; GUT  
  Abstract The measured branching fractions of B-mesons into leptonic final states derived by the LHCb, Belle and BaBar collaborations hint towards the breakdown of lepton flavour universality. In this work we take at face value the so-called R-D(()*()) observables that are defined as the ratios of neutral B-meson charged-current decays into a D-(*())-meson, a charged lepton and a neutrino final state in the tau and light lepton channels. A well-studied and simple solution to this charged current anomaly is to introduce a scalar leptoquark S-1 that couples to the second and third generation of fermions. We investigate how S-1 can also serve as a mediator between the Standard Model and a dark sector. We study this scenario in detail and estimate the constraints arising from collider searches for leptoquarks, collider searches for missing energy signals, direct detection experiments and the dark matter relic abundance. We stress that the production of a pair of leptoquarks that decays into different final states (i.e. the commonly called “mixed” channels) provides critical information for identifying the underlying dynamics, and we exemplify this by studying the t tau b nu and the resonant S-1 plus missing energy channels. We find that direct detection data provides non-negligible constraints on the leptoquark coupling to the dark sector, which in turn affects the relic abundance. We also show that the correct relic abundance can not only arise via standard freeze-out, but also through conversion-driven freeze-out. We illustrate the rich phenomenology of the model with a few selected benchmark points, providing a broad stroke of the interesting connection between lepton flavour universality violation and dark matter.  
  Address [Belanger, Genevieve] Univ Grenoble Alpes, CNRS, USMB, LAPTh, 9 Chemin Bellevue, F-74940 Annecy, France, Email: belanger@lapth.cnrs.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000752903000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5115  
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A. url  doi
openurl 
  Title Combined analysis of neutrino decoherence at reactor experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (down) 042 - 12pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, sigma > 2.1 x 10(-4) nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.  
  Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762304800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva