Vale Silva, L. (2024). Effects of squared four-fermion operators of the standard model effective field theory on meson mixing. Phys. Rev. D, 110(1), 016006–16pp.
Abstract: The standard model effective field theory (SMEFT) is a universal way of parametrizing new physics (NP) manifesting as new, heavy particle interactions with the Standard Model (SM) degrees of freedom, that respect the SM gauged symmetries. Higher order terms in the NP interactions possibly lead to sizable effects, mandatory for meaningful phenomenological studies, such as contributions to neutral meson mixing, which typically pushes the scale of NP to energy scales much beyond the reach of direct searches in colliders. I discuss the leading-order renormalization of double-insertions of dimension-6 four-fermion operators that change quark flavor by one unit (i.e., Delta F = 1, F = strange-, charm-, or bottom-flavor), by dimension-8 operators relevant to meson mixing (i.e., Delta F = 2) in SMEFT. Then, I consider the phenomenological implications of contributions proportional to large Yukawas, setting bounds on the Wilson coefficients of operators of dimension-6 via the leading logarithmic contributions. Given the underlying interest of SMEFT to encode full-fledged models at low energies, this work stresses the need to consider dimension-8 operators in phenomenological applications of dimension-6 operators of SMEFT.
|
Garcia-Recio, C., Geng, L. S., Nieves, J., & Salcedo, L. L. (2011). Low-lying even-parity meson resonances and spin-flavor symmetry. Phys. Rev. D, 83(1), 016007–30pp.
Abstract: Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the rho nonet and of the pi octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J(P) = 0(+) and 1(+) sectors, can be classified according to multiplets of SU(6). The f(0)(1500), f(1)(1420), and some 0(+)(2(++)) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I >= 3/2 and/or vertical bar Y vertical bar = 2) with masses in the range of 1.4-1.6 GeV, which would complete the 27(1), 10(3), and 10(3)* multiplets of SU(3) circle times SU(2).
|
Chachamis, G., Sabio Vera, A., & Salas, C. (2013). Bootstrap and momentum transfer dependence in small x evolution equations. Phys. Rev. D, 87(1), 016007–6pp.
Abstract: Using Monte Carlo integration techniques, we investigate running coupling effects compatible with the high energy bootstrap condition to all orders in the strong coupling in evolution equations valid at small values of Bjorken x in deep inelastic scattering. A model for the running of the coupling with analytic behavior in the infrared region and compatible with power corrections to jet observables is used. As a difference to the fixed coupling case, where the momentum transfer acts as an effective strong cutoff of the diffusion to infrared scales, in our running coupling study the dependence on the momentum transfer is much milder.
|
Abreu, L. M., Ikeno, N., & Oset, E. (2023). Role of f0(980) and a0(980) in the B- → π-K+K- and B- → π-K0Kbar0 reactions. Phys. Rev. D, 108(1), 016007–9pp.
Abstract: In this work we study the role of the f(0)(980) and a(0)(980) resonances in the low K+K- and K-0(K) over bar (0) invariant-mass region of the B- -> pi-K+K- and B- -> pi K--(0)(K) over bar (0) reactions. The amplitudes are calculated by using the chiral unitary SU(3) formalism, in which these two resonances are dynamically generated from the unitary pseudoscalar-pseudoscalar coupled-channel approach. The amplitudes are then used as input in the evaluation of the mass distributions with respect to the K+K- and K-0(K) over bar (0) invariant masses, where the contributions coming from the I = 0 and I = 1 components are explicitly assessed. Furthermore, the contribution of the K*(892)K-0(-) production and its influence on the pi K--(+) and K+K- systems are also evaluated, showing that there is no significant strength for small K+K- invariant mass. Finally, the final distributions of M-inv(2) ((KK -/+)-K-+/-) for the B--/+ -> pi(KK -/+)-K--/+-K-+/- reactions are estimated and compared with the LHCb data. Our results indicate that the I = 0 component tied to the f(0)(980) excitation generates the dominant contribution in the range of low K+K- invariant mass.
|
de Gouvea, A., Herrero-Garcia, J., & Kobach, A. (2014). Neutrino masses, grand unification, and baryon number violation. Phys. Rev. D, 90(1), 016011–11pp.
Abstract: If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
|