Azizi, K., Bayar, M., Ozpineci, A., Sarac, Y., & Sundu, H. (2012). Semileptonic transition of Sigma(b) to Sigma in light cone QCD sum rules. Phys. Rev. D, 85(1), 016002–8pp.
Abstract: We use distribution amplitudes of the light Sigma baryon and the most general form of the interpolating current for heavy Sigma(b) baryon to investigate the semileptonic Sigma(b) -> Sigma l(+)l(-) transition in light cone QCD sum rules. We calculate all 12 form factors responsible for this transition and use them to evaluate the branching ratio of the considered channel. The order of branching fraction shows that this channel can be detected at LHC.
|
Forero, D. V., Morisi, S., Romao, J. C., & Valle, J. W. F. (2013). Neutrino mixing with revamped A(4) flavor symmetry. Phys. Rev. D, 88(1), 016003–7pp.
Abstract: We suggest a minimal extension of the simplest A(4) flavor model that can induce a nonzero theta(13) value, as required by recent neutrino oscillation data from reactors and accelerators. The predicted correlation between the atmospheric mixing angle theta(23) and the magnitude of theta(13) leads to an allowed region substantially smaller than indicated by neutrino-oscillation global fits. Moreover, the scheme correlates CP violation in neutrino oscillations with the octant of the atmospheric mixing parameter theta(23) in such a way that, for example, maximal mixing necessarily violates CP. We briefly comment on other phenomenological features of the model.
|
Aceti, F., Bayar, M., Oset, E., Martinez Torres, A., Khemchandani, K. P., Dias, J. M., et al. (2014). Prediction of an I=1 D(D)over-bar* state and relationship to the claimed Z(c)(3900), Z(c)(3885). Phys. Rev. D, 90(1), 016003–13pp.
Abstract: We study here the interaction of D (D) over bar* in the isospin I = 1 channel in light of recent theoretical advances that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We find that the exchange of light q (q) over bar is Okubo-Zweig-Iizuka (OZI) suppressed and thus we concentrate on the exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the exchange of heavy vectors, which then determines the strength of the interaction. A barely D (D) over bar* bound state decaying into eta(c)rho and pi J/psi is found. At the same time we reanalyze the data of the BESIII experiment on e(+)e(-) -> pi(+/-)(D (D) over bar*)(-/+), from where a Z(c)(3885) state was claimed, associated to a peak in the (D (D) over bar*)(-/+) invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Z(c)(3900) state found at BESIII, reconfirmed at 3894 MeV at Belle, or 3885 MeV at CLEO, could all be the same state and correspond to the one that we find theoretically.
|
Jung, S., Lee, J., Perello, M., Tian, J. P., & Vos, M. (2022). Higgs, top quark, and electroweak precision measurements at future e(+) e (-) colliders: A combined effective field theory analysis with renormalization mixing. Phys. Rev. D, 105(1), 016003–38pp.
Abstract: This paper presents a combined analysis of the potential of a future electron-positron collider to constrain the Higgs, top, and electroweak sectors of the Standard Model effective field theory. The leading contributions of operators involving top quarks arise mostly at one-loop suppressed order and can be captured by the renormalization group mixing with Higgs operators. We perform global fits with an extended basis of 29 parameters, including both Higgs and top operators, to the projections for the Higgs, top, and electroweak precision measurements at the International Linear Collider (ILC). The determination of the Higgs boson couplings in the 250 GeV stage of the ILC is initially severely degraded by the additional top-quark degrees of freedom, but can be nearly completely recovered by the inclusion of precise measurements of top-quark EW couplings at the LHC. The physical Higgs couplings are relatively robust, as the top mass is larger than the energy scale of electroweak processes. The effect of the top operators on the bounds on the Wilson coefficients is much more pronounced and may limit our ability to identify the source of deviations from the Standard Model. Robust global bounds on all Wilson coefficients are only obtained when the 500 GeV stage of the ILC is included.
|
Duan, M. Y., Lyu, W. T., Xiao, C. W., Wang, E., Xie, J. J., Chen, D. Y., et al. (2025). Λc+ → ηπ+ Λ reaction and the Λa0+(980) and π+Λ(1670) contributions. Phys. Rev. D, 111(1), 016004–10pp.
Abstract: We study from the theoretical point of view the Lambda(+)(c) ->pi(+) eta Lambda reaction, recently measured by the Belle and BESIII Collaborations, where clear signals are observed for a(0)(980), Lambda(1670), and Sigma(1385) excitation. By considering the a(0)(980) and Lambda(1670) as dynamically generated resonances from the meson meson and meson baryon interaction, respectively, we are able to determine their relative production strengths in the reaction, which is also tied to the strength of the pi(+) eta Lambda tree level contribution. We observe that this latter strength is very big and there are large destructive interferences between the tree level and the rescattering terms where the a(0)(980) and Lambda(1670) are generated. The Sigma(1385) contribution is included by means of a free parameter, the only one of the theory, up to a global normalization, when one considers only external emission, and we observe that the spin flip part of this term, usually ignored in theoretical and experimental works, plays an important role determining the shape of the mass distributions. Internal emission is also considered and it is found to a minor role.
|