|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for dark matter annihilation in the earth using the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 16 Issue Pages (up) 41-48
Keywords Dark matter; Neutrino telescope; ANTARES; Indirect detection; WIMP
Abstract A search for a neutrino signal from WIMP pair annihilations in the centre of the Earth has been performed with the data collected with the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria have been developed and tuned to maximise the sensitivity of the experiment to such a neutrino signal. No significant excess of neutrinos over the expected background has been observed. Upper limits at 90% C.L. on the WIMP annihilation rate in the Earth and the spin independent scattering cross-section of WIMPs to nucleons sigma(SI)(p) were calculated for WIMP pair annihilations into either iota(+) iota(-), W+W-, b (b) over bar or the non-SUSY v mu(v) over bar as a function of the WIMP mass (between 25 GeV/c(2) and 1000 GeV/c(2)) and as a function of the thermally averaged annihilation cross section times velocity <sigma A(v)>(Earth) of the WIMPs in the centre of the Earth. For masses of the WIMP close to the mass of iron nuclei (50 GeV/c(2)), the obtained limits on sigma(SI)(p) are more stringent than those obtained by other indirect searches.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: antares.spokesperson@in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000405461200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3201
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at s=13 TeV with the ATLAS detector Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 041 - 50pp
Keywords Beyond Standard Model; Dark matter; FCNC Interaction; Hadron-Hadron scattering (experiments); vector-like quarks
Abstract This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton-proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb(-1) are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered.
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000467622100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4008
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurement of differential cross sections for single diffractive dissociation in root s=8 TeV pp collisions using the ATLAS ALFA spectrometer Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (up) 42 - 37pp
Keywords Diffraction; Forward physics; Hadron-Hadron scattering (experiments); QCD
Abstract A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy s= 8 TeV is used to study inclusive single diffractive dissociation, pp -> X p. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system X are measured in the central detector components. The fiducial range of the measurement is -4.0 < log(10)xi < -1.6 and 0.016 < |t| < 0.43 GeV2, where xi is the proton fractional energy loss and t is the squared four-momentum transfer. The total cross section integrated across the fiducial range is 1.59 +/- 0.13 mb. Cross sections are also measured differentially as functions of xi, t, and increment eta, a variable that characterises the rapidity gap separating the proton and the system X . The data are consistent with an exponential t dependence, d sigma/dt proportional to e(Bt) with slope parameter B = 7.65 +/- 0.34 GeV-2. Interpreted in the framework of triple Regge phenomenology, the xi dependence leads to a pomeron intercept of alpha(0) = 1.07 +/- 0.09.
Address [Delitzsch, C. M.; Dyckes, G. I.; Jacobs, R. M.; Olsson, M. J. R.; Petridou, C.; Rados, P.; Shatalov, P. B.; Whiteson, D.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000515812400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4303
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S.
Title Evaporation of dark matter from celestial bodies Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages (up) 042 - 53pp
Keywords dark matter detectors; dark matter theory; massive stars; stars
Abstract Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium, spanning the mass range [10(-)(10) – 10(2)] M-circle dot, for constant scattering cross sections and s-wave annihilations. We illustrate the critical importance of the exponential tail of the evaporation rate, which has not always been appreciated in recent literature, and obtain a robust result: for the geometric value of the scattering cross section and for interactions with nucleons, at the local galactic position, the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium is approximately given by E-c/T-chi similar to 30, where E-c is the escape energy of DM particles at the core of the object and T-chi is their temperature. In that case, the minimum value of the DM evaporation mass is obtained for super-Jupiters and brown dwarfs, m(ev)(ap) similar or equal to 0.7 GeV. For other values of the scattering cross section, the DM evaporation mass only varies by a factor smaller than three within the range 10(-41) cm(2) <= sigma(p) <= 10(-31) cm(2), where sigma(p) is the spin-independent DM-nucleon scattering cross section. Its dependence on parameters such as the galactic DM density and velocity, or the scattering and annihilation cross sections is only logarithmic, and details on the density and temperature profiles of celestial bodies have also a small impact.
Address [Garani, Raghuveer] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804029400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5243
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.
Title MSSM forecast for the LHC Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 043 - 48pp
Keywords Beyond Standard Model; Supersymmetric Effective Theories
Abstract We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M-Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e(+)e(-) data) is considered, the preferred region (for μ> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-mu possibilities.
Address [Eugenia Cabrera, Maria; Alberto Casas, J.] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000278251300005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 435
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurements of the branching fractions of Lambda(+)(c) -> p pi(-)pi(+), Lambda(+)(c) -> pK(-)K(+), and Lambda(+)(c) -> p pi K-(+) Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (up) 043 - 23pp
Keywords Branching fraction; Charm physics; Flavor physics; Hadron-Hadron scattering (experiments); Spectroscopy
Abstract The ratios of the branching fractions of the decays do Lambda(+)(c) -> , p pi(-)pi(+), Lambda(+->)(c) pK(-)K(+), and Lambda(+)(c) -> p pi K--(+) with respect to the Cabibbo-favoured Lambda(+)(c) -> pK(-)pi(+) decay are measured using proton-proton collision data collected with the LHCb experiment at a 7 TeV centre-of-mass energy and corresponding to an integrated luminosity of 1.0 fb(-1): B(Lambda(+)(c) -> p pi(-)pi(+))/B(Lambda(+)(c) -> pK(-)pi(+)) = (7.44 +/- 0.08 +/- 0.18)%. B(Lambda(+)(c) -> pK(-)K(+))/B(Lambda(+)(c) -> pK(-)pi(+) = (1.70 +/- 0.03 +/- 0.03)%, B(Lambda(+)(c) -> p pi(-)pi K-+(+))/B(Lambda(+)(c) -> pK(-)pi(+) = (0.165 +/- 0.015 +/- 0.005)%, where the uncertainties are statistical and systematic, respectively. These results are the most precise measurements of these quantities to date. When multiplied by the world average value for B(Lambda(+)(c) -> p pi(-)pi(+)), the corresponding branching fractions are B(Lambda(+)(c) -> p pi(-)pi(+) = (4.72 +/- 0.05 +/- 0.11 +/- 0.25) x 10(-3), B(Lambda(+)(c) -> pK(-)K(+)) = (1.08 +/- 0.02 +/- 0.02 +/- 0.06) x 10(-3), B(Lambda(+)(c) -> , p pi K--(+)) = (1.04 +/- 0.09 +/- 0.03 +/- 0.05) x 10(-4), where the final uncertainty is due to B(Lambda(+)(c) -> pK(-)pi(+)).
Address [Bediaga, I.; Torresl, M. Cruz; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Rodriguez, J. Molina; dos Reis, A. C.; Rodrigues, A. B.; Guimaraes, V. Salustino; Lavra, I. Soares; Aoudel, R. Tourinho Jadallah] CBPF, Rio De Janeiro, Brazil, Email: stephen.ogilvy@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000427543500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3532
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (up) 043 - 45pp
Keywords B physics; FCNC Interaction; Flavor physics; Hadron-Hadron scattering (experiments); Rare decay
Abstract An angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) is presented, using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13TeV, corresponding to an integrated luminosity of 8.4 fb(-1). The observables describing the angular distributions of the decay B-s(0) -> phi mu(+)mu(-) are determined in regions of q(2), the square of the dimuon invariant mass. The results are consistent with Standard Model predictions.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: marcel.materok@rwth-aachen.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000716428600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5018
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.
Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 907 Issue 1 Pages (up) 44 - 14pp
Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe
Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4698
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 044 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000742012500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5079
Permanent link to this record
 

 
Author Aja, B. et al; Gimeno, B.
Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (up) 044 - 29pp
Keywords dark matter experiments; axions; dark matter detectors
Abstract We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000934034600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5478
Permanent link to this record