|   | 
Details
   web
Records
Author Lopez-Honorez, L.; Mena, O.; Villanueva-Domingo, P.
Title Dark matter microphysics and 21 cm observations Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 2 Pages (down) 023522 - 12pp
Keywords
Abstract Dark matter interactions with massless or very light standard model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g., early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Blvd Triomphe, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000456291400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3885
Permanent link to this record
 

 
Author Heisenberg, L.; Ramirez, H.; Tsujikawa, S.
Title Inflation with mixed helicities and its observational imprint on CMB Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 2 Pages (down) 023505 - 14pp
Keywords
Abstract In the framework of effective field theories with prominent helicity-0 and helicity-1 fields coupled to each other via a dimension-3 operator, we study the dynamics of inflation driven by the helicity-0 mode, with a given potential energy, as well as the evolution of cosmological perturbations, influenced by the presence of a mixing term between both helicities. In this scenario, the temporal component of the helicity-1 mode is an auxiliary field and can be integrated out in terms of the time derivative of the helicity-0 mode, so that the background dynamics effectively reduces to that in single-field inflation modulated by a parameter beta associated to the coupling between helicity-0 and helicity-1 modes. We discuss the evolution of a longitudinal scalar perturbation psi and an inflaton fluctuation delta phi, and we explicitly show that a particular combination of these two, which corresponds to an isocurvature mode, is subject to exponential suppression by the vector mass comparable to the Hubble expansion rate during inflation. Furthermore, we find that the effective single-field description corrected by beta also holds for the power spectrum of curvature perturbations generated during inflation. We compute the standard inflationary observables such as the scalar spectral index n(s), and the tensorto-scalar ratio r and confront several inflaton potentials with the recent observational data provided by Planck 2018. Our results show that the coupling between helicity-0 and helicity-1 modes can lead to a smaller value of the tensor-to-scalar ratio especially for small-field inflationary models, so our scenario exhibits even better compatibility with the current observational data.
Address [Heisenberg, Lavinia] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000454769400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3864
Permanent link to this record
 

 
Author Estienne, M.; Fallot, M.; Algora, A.; Briz-Monago, J.; Bui, V.M.; Cormon, S.; Gelletly, W.; Giot, L.; Guadilla, V.; Jordan, D.; Le Meur, L.; Porta, A.; Rice, S.; Rubio, B.; Tain, J.L.; Valencia, E.; Zakari-Issoufou, A.A.
Title Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 2 Pages (down) 022502 - 6pp
Keywords
Abstract A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization. The results exhibit a better agreement than is obtained with the Huber-Mueller model in the 2-5 MeV range, the region that dominates the detected flux. A systematic trend is found in which the antineutrino flux computed with the summation model decreases with the inclusion of more pandemonium-free data. The calculated flux obtained now lies only 1.9% above that detected in the Daya Bay experiment, a value that may be reduced with forthcoming new pandemonium-free data, leaving less room for a reactor anomaly. Eventually, the new predictions of individual antineutrino spectra for the U-235, Pu-239, Pu-241, and U-238 are used to compute the dependence of the reactor antineutrino spectral shape on the fission fractions.
Address [Estienne, M.; Fallot, M.; Briz-Monago, J.; Bui, V. M.; Cormon, S.; Giot, L.; Guadilla, V.; Le Meur, L.; Porta, A.; Zakari-Issoufou, A. -A.] Univ Nantes, CNRS, IN2P3, SUBATECH,IMT Atlantique, F-44307 Nantes, France, Email: magali.estienne@subatech.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000474894200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4078
Permanent link to this record
 

 
Author Husek, T.; Goudzovski, E.; Icampf, K.
Title Precise Determination of the Branching Ratio of the Neutral-Pion Dalitz Decay Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 122 Issue 2 Pages (down) 022003 - 6pp
Keywords
Abstract We provide a new value for the ratio R = Gamma(pi(0) -> e(+)e(-)gamma(gamma))/Gamma(pi(0) -> gamma gamma) = 11.978(6) x 10(-3), which is by 2 orders of magnitude more precise than the current Particle Data Group average. It is obtained using the complete set of the next-to-leading-order radiative corrections in the QED sector, and incorporates up-to-date values of the pi(0)-transition-form-factor slope. The ratio R translates into the branching ratios of the two main pi(0) decay modes: B(pi(0) -> gamma gamma) = 98.8131(6)% and B(pi(0) -> e(+)e(-)gamma(gamma)) = 1.1836(6)%.
Address [Husek, Tomas] Univ Valencia, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: thusek@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000456041800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3886
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 2 Pages (down) 021802 - 7pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Baines, S.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: vasiliki.mitsou@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000474894200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4077
Permanent link to this record