AGATA Collaboration(Siciliano, M. et al), Gadea, A., Perez-Vidal, R. M., & Domingo-Pardo, C. (2020). Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108. Phys. Lett. B, 806, 135474–7pp.
Abstract: The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108.
|
AGATA Collaboration(Avigo, R. et al), Domingo-Pardo, C., Gadea, A., & Gonzalez, V. (2020). Low-lying electric dipole gamma-continuum for the unstable Fe-62(,)64 nuclei: Strength evolution with neutron number. Phys. Lett. B, 811, 135951–6pp.
Abstract: The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.
|
Hall, O. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., Rubio, B., et al. (2021). beta-delayed neutron emission of r-process nuclei at the N=82 shell closure. Phys. Lett. B, 816, 136266–7pp.
Abstract: Theoretical models of beta-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the beta-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of Sn-132 are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P-1n values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at A approximate to 130.
|
n_TOF Collaboration(Manna, A. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2025). New insights on fission of 235U induced by high energy neutrons from a new measurement at n_TOF. Phys. Lett. B, 860, 139213–8pp.
Abstract: The U-235(n, f) reaction cross section was measured relative to neutron-proton elastic scattering for the first time in the energy region from 10 MeV to 440 MeV at the CERN n_TOF facility, extending the upper limit of the only previous measurement in the literature by more than 200 MeV. For neutron energies below 200 MeV, our results agree within one standard deviation with data in literature. Above 200 MeV, the comparison of model calculations to our data indicates the need to introduce a transient time in neutron-induced fission to allow the simultaneous description of (n, f) and (p, f) reactions.
|
n_TOF Collaboration(Guerrero, C. et al), Domingo-Pardo, C., & Tain, J. L. (2020). Neutron Capture on the s-Process Branching Point Tm-171 via Time-of-Flight and Activation. Phys. Rev. Lett., 125(14), 142701–8pp.
Abstract: The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable Tm-171 (t(1/2) = 1.92 yr) is part of the branching around mass A similar to 170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of Tm-171 at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (nTOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time -of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384 (40) mb, with which the estimation from the nTOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KAlloNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A similar to 170 branching, namely, the Yb-171 abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.
|