|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Ruiz Vidal, J.; Sanderswood, I.
Title Observation of Cabibbo-Suppressed Two-Body Hadronic Decays and Precision Mass Measurement of the Ω0c Baryon Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 8 Pages (up) 081802 - 11pp
Keywords
Abstract The first observation of the singly Cabibbo-suppressed 0c -> -K thorn and 0c -> -z thorn decays is reported, using proton -proton collision data at a center -of -mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb-1, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be Bo0c ->-K thorn thorn Bo0c ->-z thorn thorn 1/4 1/26.08 ⠂ 0.51ostat thorn ⠂ 0.40osyst thorn ⠃%; Bo0c ->-z thorn thorn Bo0c ->-z thorn thorn 1/4 1/215.81 ⠂ 0.87ostat thorn ⠂ 0.44osyst thorn ⠂ 0.16oext thorn ⠃%. In addition, using the 0c -> -z thorn decay channel, the 0c baryon mass is measured to be Mo0c thorn 1/4 2695.28 ⠂ 0.07ostat thorn ⠂ 0.27osyst thorn ⠂ 0.30oext thorn MeV; improving the precision of the previous world average by a factor of 4.
Address [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Santoro, L.; Machado, D. Torres] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001190704700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6053
Permanent link to this record
 

 
Author Wang, D.; Mena, O.
Title Robust analysis of the growth of structure Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 8 Pages (up) 083539 - 18pp
Keywords
Abstract Current cosmological tensions show that it is crucial to test the predictions from the canonical ACDM paradigm at different cosmic times. One very appealing test of structure formation in the Universe is the growth rate of structure in our universe f, usually parametrized via the growth index gamma, with f equivalent to Omega(m)(a)gamma and gamma similar or equal to 0.55 in the standard ACDM case. Recent studies have claimed a suppression of the growth of structure from a variety of cosmological observations, characterized by gamma > 0.55. By employing different self-consistent growth parametrizations schemes, we show here that gamma < 0.55, obtaining instead an enhanced growth of structure today. This preference reaches the 3 sigma significance using cosmic microwave background observations, supernova Ia and baryon acoustic oscillation measurements. The addition of cosmic microwave background lensing data relaxes such a preference to the 2 sigma level, since a larger lensing effect can always be compensated with a smaller structure growth, or, equivalently, with gamma > 0.55. We have also included the lensing amplitude AL as a free parameter in our data analysis, showing that the preference for AL > 1 still remains, except for some particular parametrizations when lensing observations are included. We also do not find any significant preference for an oscillatory dependence of AL, AL + Am sin l. To further reassess the effects of a nonstandard growth, we have computed by means of N-body simulations the dark matter density fields, the dark matter halo mass functions and the halo density profiles for different values of gamma. Future observations from the Square Kilometer Array, reducing by a factor of 3 the current errors on the gamma parameter, further confirm or refute with a strong statistical significance the deviation of the growth index from its standard value.
Address [Wang, Deng; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224750700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6130
Permanent link to this record
 

 
Author Navarro-Salas, J.
Title Black holes, conformal symmetry, and fundamental fields Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue 8 Pages (up) 085003 - 14pp
Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model
Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
Address [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001187435100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6029
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S.
Title Solar neutrino measurements using the full data period of Super-Kamiokande-IV Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 092001 - 44pp
Keywords
Abstract An analysis of solar neutrino data from the fourth phase of Super-Kamiokande (SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the dataset of SK- IV corresponds to 2970 days and the total live time for all four phases is 5805 days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering the data acquisition threshold in May 2015, further reduction of the spallation background using neutron clustering events, precise energy reconstruction considering the time variation of the PMT gain. The observed number of solar neutrino events in 3.49-19.49 MeV electron kinetic energy region during SK-IV is 65, 443(-388)(+390) (stat.) +/- 925(syst.) events. Corresponding B-8 solar neutrino flux is (2.314 +/- 0.014(stat.) +/- 0.040(syst.)) x 106 cm(-2) s(-1), assuming a pure electron-neutrino flavor component without neutrino oscillations. The flux combined with all SK phases up to SK-IV is (2.336 +/- 0.011(stat.) +/- 0.043(syst.)) x 106 cm(-2) s(-1). Based on the neutrino oscillation analysis from all solar experiments, including the SK 5805 days dataset, the best-fit neutrino oscillation parameters are sin(2)theta(12,solar) = 0.306 +/- 0.013 and Delta m(21,solar)(2) = (6.10(-0.81)(+0.95)) x 10(-5) eV(2), with a deviation of about 1.5 sigma from the Delta m(21)(2) parameter obtained by KamLAND. The best-fit neutrino oscillation parameters obtained from all solar experiments and KamLAND are sin(2)theta(12, global) = 0.307 +/- 0.012 and Delta m(21,) (2)(global) = (7.50(-0.18)(+0.19)) x 10(-5) eV(2).
Address [Abe, K.; Bronner, C.; Hayato, Y.; Hiraide, K.; Hosokawa, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kaneshima, R.; Kashiwagi, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Noguchi, Y.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiba, H.; Shimizu, K.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Watanabe, S.; Yano, T.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Kamioka, Gifu 5061205, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001261161700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6210
Permanent link to this record
 

 
Author Roca, L.; Song, J.; Oset, E.
Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 094005 - 8pp
Keywords
Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224715500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6135
Permanent link to this record