toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 694 Issue Pages (down) 211-223  
  Keywords Neutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiber  
  Abstract Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. (C) 2012 Elsevier B.V. All rights reserved.  
  Address [Gomi, S.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Kawamuko, H.; Kikawa, T.; Kubo, H.; Kubota, J.; Kurimoto, Y.; Litchfield, R. P.; Matsuoka, K.; Minamino, A.; Murakami, A.; Nagai, N.; Nakaya, T.; Nitta, K.; Nobuhara, T.; Otani, M.; Suzuki, K.; Taguchi, M.; Takahashi, S.; Yamauchi, T.] Kyoto Univ, Dept Phys, Kyoto 606, Japan, Email: masashi.o@scphys.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311020500031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1239  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title The T2K experiment Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 659 Issue 1 Pages (down) 106-135  
  Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande  
  Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.  
  Address [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297826100016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 832  
Permanent link to this record
 

 
Author Capozzi, F.; Saviano, N. url  doi
openurl 
  Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 2 Pages (down) 94 - 23pp  
  Keywords astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos  
  Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.  
  Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762069300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5146  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages (down) 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author Abgrall, N. et al; Cervera-Villanueva, A.; Escudero, L.; Monfregola, L.; Stamoulis, P. url  doi
openurl 
  Title Time projection chambers for the T2K near detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 637 Issue 1 Pages (down) 25-46  
  Keywords Time projection chamber; Drift chamber; Gas system; Micromegas; Neutrino oscillation  
  Abstract The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker are used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/NOMAD dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system.  
  Address [Birney, P.; Bojechko, C.; Fransham, K.; Gaudin, A.; Karlen, D.; Langstaff, R.; Lenckowski, M.; Myslik, J.; Poffenberger, P.; Roney, M.; Tvaskis, V.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada, Email: karlen@uvic.ca  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289608000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 607  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva