toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages (up) 055008 - 7pp  
  Keywords  
  Abstract Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.  
  Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281741400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 380  
Permanent link to this record
 

 
Author Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Pieri, L.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Complementarity of indirect and accelerator dark matter searches Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 5 Pages (up) 055014 - 10pp  
  Keywords  
  Abstract Even if supersymmetric particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the dark matter (DM) in the Universe using LHC data alone. We study the complementarity of LHC and DM indirect searches, working out explicitly the reconstruction of the DM properties for a specific benchmark model in the coannihilation region of a 24-parameters supersymmetric model. Combining mock high-luminosity LHC data with presentday null searches for gamma rays from dwarf galaxies with the Fermi Large Area Telescope, we show that current Fermi Large Area Telescope limits already have the capability of ruling out a spurious wino-like solution which would survive using LHC data only, thus leading to the correct identification of the cosmological solution. We also demonstrate that upcoming Planck constraints on the reionization history will have a similar constraining power and discuss the impact of a possible detection of gamma rays from DM annihilation in the Draco dwarf galaxy with a Cherenkov-Telescope-Array-like experiment. Our results indicate that indirect searches can be strongly complementary to the LHC in identifying the DM particles, even when astrophysical uncertainties are taken into account.  
  Address [Bertone, G.] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301647300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 948  
Permanent link to this record
 

 
Author Pato, M.; Baudis, L.; Bertone, G.; Ruiz de Austri, R.; Strigari, L.E.; Trotta, R. url  doi
openurl 
  Title Complementarity of dark matter direct detection targets Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 8 Pages (up) 083505 - 11pp  
  Keywords  
  Abstract We investigate the reconstruction capabilities of the dark matter mass and spin-independent cross section from future ton-scale direct detection experiments using germanium, xenon, or argon as targets. Adopting realistic values for the exposure, energy threshold, and resolution of dark matter experiments which will come online within 5 to 10 years, the degree of complementarity between different targets is quantified. We investigate how the uncertainty in the astrophysical parameters controlling the local dark matter density and velocity distribution affects the reconstruction. For a 50 GeV WIMP, astrophysical uncertainties degrade the accuracy in the mass reconstruction by up to a factor of similar to 4 for xenon and germanium, compared to the case when astrophysical quantities are fixed. However, the combination of argon, germanium, and xenon data increases the constraining power by a factor of similar to 2 compared to germanium or xenon alone. We show that future direct detection experiments can achieve self-calibration of some astrophysical parameters, and they will be able to constrain the WIMP mass with only very weak external astrophysical constraints.  
  Address [Pato, Miguel; Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: pato@iap.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289353200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 605  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva