toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arnault, P.; Perez, A.; Arrighi, P.; Farrelly, T. url  doi
openurl 
  Title Discrete-time quantum walks as fermions of lattice gauge theory Type Journal Article
  Year 2019 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 99 Issue 3 Pages (down) 032110 - 16pp  
  Keywords  
  Abstract It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.  
  Address [Arnault, Pablo; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: pablo.arnault@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461896700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3950  
Permanent link to this record
 

 
Author Degiovanni, A.; Wuensch, W.; Giner Navarro, J. doi  openurl
  Title Comparison of the conditioning of high gradient accelerating structures Type Journal Article
  Year 2016 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 19 Issue 3 Pages (down) 032001 - 6pp  
  Keywords  
  Abstract Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.  
  Address [Degiovanni, Alberto; Wuensch, Walter] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: walter.wuensch@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400274700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3090  
Permanent link to this record
 

 
Author Guo, J.J.; Sun, F.X.; Zhu, D.Q.; Gessner, M.; He, Q.Y.; Fadel, M. url  doi
openurl 
  Title Detecting Einstein-Podolsky-Rosen steering in non-Gaussian spin states from conditional spin-squeezing parameters Type Journal Article
  Year 2023 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 108 Issue 1 Pages (down) 012435 - 7pp  
  Keywords  
  Abstract We present an experimentally practical method to reveal Einstein-Podolsky-Rosen (EPR) steering in non-Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum Fisher information, and uses bounds derived from generalized spin-squeezing parameters that involve measurements of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters, which quantify the metrological advantage provided by conditional states, as well as detect the presence of an EPR paradox.  
  Address [Guo, Jiajie; Sun, Feng-Xiao; Zhu, Daoquan; He, Qiongyi] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China, Email: manuel.gessner@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130449100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5905  
Permanent link to this record
 

 
Author Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. url  doi
openurl 
  Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 1 Pages (down) 012335 - 6pp  
  Keywords  
  Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.  
  Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380095000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2761  
Permanent link to this record
 

 
Author Perez, A. url  doi
openurl 
  Title Asymptotic properties of the Dirac quantum cellular automaton Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 93 Issue 1 Pages (down) 012328 - 10pp  
  Keywords  
  Abstract We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.  
  Address [Perez, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368291600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2520  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva