toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beniwal, A.; Herrero-Garcia, J.; Leerdam, N.; White, M.; Williams, A.G. url  doi
openurl 
  Title The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (down) 136 - 34pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.  
  Address [Beniwal, Ankit] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium, Email: ankit.beniwal@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000668611300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4881  
Permanent link to this record
 

 
Author Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F. url  doi
openurl 
  Title Updated global 3+1 analysis of short-baseline neutrino oscillations Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (down) 135 - 38pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We present the results of an updated fit of short-baseline neutrino oscillation data in the framework of 3+1 active-sterile neutrino mixing. We first consider v(e) and (v) over bar (e) disappearance in the light of the Gallium and reactor anomalies. We discuss the implications of the recent measurement of the reactor (v) over bar (e) spectrum in the NEOS experiment, which shifts the allowed regions of the parameter space towards smaller values of |U-e1|(2). The beta-decay constraints of the Mainz and Troitsk experiments allow us to limit the oscillation length between about 2 cm and 7 m at 3 sigma for neutrinos with an energy of 1 MeV. The corresponding oscillations can be discovered in a model-independent way in ongoing reactor and source experiments by measuring v(e) and (v) over bar (e), disappearance as a function of distance. We then consider the global fit of the data on short-baseline v(mu)((-)) -> v(e)((-)) transitions in the light of the LSND anomaly, taking into account the constraints from v(e)(( )) and v(mu)((-)) disappearance experiments, including the recent data of the MINOS and IceCube experiments. The combination of the NEOS constraints on |U-e4|(2) and the MINOS and IceCube constraints on |U-mu 4|(2) lead to an unacceptable appearance-disappearance tension which becomes tolerable only in a pragmatic fit which neglects the MiniBooNE low-energy anomaly. The minimization of the global chi(2) in the space of the four mixing parameters Delta m(41)(2), |U-e4|(2), |U-mu 4|(2) and |U-4 tau|(2) leads to three allowed regions with narrow Delta m(41)(2) widths at Delta m(41)(2) approximate to 1.7 (best-fit), 1.3 (at 2 sigma), 2.4 (at 3 sigma) eV(2). The effective amplitude of short-baseline v(mu)((-)) -> v(e)((-)) oscillations is limited by 0.00048 less than or similar to sin(2) 2 nu(e mu) less than or similar to 0.0020 at 3 sigma The restrictions of the allowed regions of the mixing parameters with respect to our previous global fits are mainly due to the NEOS constraints. We present a comparison of the allowed regions of the mixing parameters with the sensitivities of ongoing experiments, which show that it is likely that these experiments will determine in a definitive way if the reactor, Gallium and LSND anomalies are due to active-sterile neutrino oscillations or not.  
  Address [Gariazzo, S.] Univ Valencia, CSIC, Inst Fis Corpusc, Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404627200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3190  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 870 Issue 2 Pages (down) 134 - 16pp  
  Keywords gravitational waves; neutrinos  
  Abstract Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.; Maris, I. C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456063900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3883  
Permanent link to this record
 

 
Author Coloma, P.; López-Pavón, J.; Molina-Bueno, L.; Urrea, S. url  doi
openurl 
  Title New physics searches using ProtoDUNE and the CERN SPS accelerator Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages (down) 134 - 18pp  
  Keywords New Light Particles; Sterile or Heavy Neutrinos  
  Abstract The exquisite capabilities of liquid Argon Time Projection Chambers make them ideal to search for weakly interacting particles in Beyond the Standard Model scenarios. Given their location at CERN the ProtoDUNE detectors may be exposed to a flux of such particles, produced in the collisions of 400 GeV protons (extracted from the Super Proton Synchrotron accelerator) on a target. Here we point out the interesting possibilities that such a setup offers to search for both long-lived unstable particles (Heavy Neutral Leptons, axion-like particles, etc) and stable particles (e.g. light dark matter, or millicharged particles). Our results show that, under conservative assumptions regarding the expected luminosity, this setup has the potential to improve over present bounds for some of the scenarios considered. This could be done within a short timescale, using facilities that are already in place at CERN, and without interfering with the experimental program in the North Area at CERN.  
  Address [Coloma, Pilar] UAM, Inst Fis Teor, CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001155849200017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5948  
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Jones Perez, J. url  doi
openurl 
  Title SUSY renormalization group effects in ultra high energy neutrinos Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (down) 133 - 26pp  
  Keywords Neutrino Physics; Supersymmetric Standard Model; Renormalization Group  
  Abstract We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Phi(0)(v epsilon+(v) over bar epsilon) : Phi(0)(v mu+(v) over bar mu) : Phi(0)(v tau+(v) over bar tau)) = (1 : 2 : 0), (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q(2) >= 10(7) GeV(2). However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale. Cerenkov detector such as IceCube.  
  Address [Bustamante, M; Gago, AM] Pontificia Univ Catolica Peru, Dept Ciencias, Sec Fis, Lima, Peru, Email: mbustamante@pucp.edu.pe  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000291364500065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 684  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva