toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S. url  doi
openurl 
  Title How many 1-loop neutrino mass models are there? Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 023 - 29pp  
  Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions  
  Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000835685500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5320  
Permanent link to this record
 

 
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultraviolet extensions of the Scotogenic model Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 023 - 35pp  
  Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter  
  Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.  
  Address [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044764300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5614  
Permanent link to this record
 

 
Author Cosme, C.; Figueroa, D.G.; Loayza, N. url  doi
openurl 
  Title Gravitational wave production from preheating with trilinear interactions Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages (up) 023 - 30pp  
  Keywords physics of the early universe; primordial gravitational waves (theory); gravita-tional waves; sources; particle physics-cosmology connection  
  Abstract We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.  
  Address [Cosme, Catarina; Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV,C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038638500007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5660  
Permanent link to this record
 

 
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M. doi  openurl
  Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages (up) 24-32  
  Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test  
  Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.  
  Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 618  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events Type Journal Article
  Year 2016 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 820 Issue 2 Pages (up) L24 - 7pp  
  Keywords neutrinos; radio continuum: general  
  Abstract We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0 degrees.4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken similar to 20. days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5 sigma upper limit for low-frequency radio emission of similar to 10(37) erg s(-1) for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z greater than or similar to 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.  
  Address [Croft, S.; Zheng, W.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373085300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2613  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva