Wu, J. et al, Algora, A., Agramunt, J., Morales, A. I., Orrigo, S. E. A., Tain, J. L., et al. (2022). First observation of isomeric states in 111Zr, 113Nb, and 115Mo. Phys. Rev. C, 106(6), 064328–5pp.
Abstract: Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
|
n_TOF Collaboration(Gunsing, F. et al), Domingo-Pardo, C., & Tain, J. L. (2012). Measurement of resolved resonances of Th-232(n, gamma) at the n_TOF facility at CERN. Phys. Rev. C, 85(6), 064601–17pp.
Abstract: The yield of the neutron capture reaction Th-232(n, gamma) has been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The reduction of the acquired data to the capture yield for resolved resonances from 1 eV to 4 keV is described and compared to a recent evaluated data set. The resonance parameters were used to assign an orbital momentum to each resonance. A missing level estimator was used to extract the s-wave level spacing of D-0 = 17.2 +/- 0.9 eV.
|
n_TOF Collaboration(Wright, T. et al), Domingo-Pardo, C., Giubrone, G., Tain, J. L., & Tarifeño-Saldivia, A. (2017). Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility. Phys. Rev. C, 96(6), 064601–11pp.
Abstract: The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
|
n_TOF Collaboration(Praena, J. et al), Domingo-Pardo, C., Giubrone, G., Tain, J. L., & Tarifeño-Saldivia, A. (2018). Measurement and resonance analysis of the S-33(n,alpha)Si-30 cross section at the CERN n_TOF facility in the energy region from 10 to 300 keV. Phys. Rev. C, 97(6), 064603–10pp.
Abstract: The (33)(n , alpha)Si-30 cross section has been measured at the neutron time-of-flight (n_TOF) facility at CERN in the neutron energy range from 10 to 300 keV relative to the B-10(n, alpha)(7) Li cross-section standard. Both reactions were measured simultaneously with a set of micromegas detectors. The flight path of 185 m has allowed us to obtain the cross section with high-energy resolution. An accurate description of the resonances has been performed by means of the multilevel multichannel R-matrix code SAMMY. The results show a significantly higher area of the biggest resonance (13.45 keV) than the unique high-resolution (n , alpha) measurement. The new parametrization of the 13.45-keV resonance is similar to that of the unique transmission measurement. This resonance is a matter of research in neutron-capture therapy. The S-33(n, alpha)Si-30 cross section has been studied in previous works because of its role in the production of S-36 in stars, which is currently overproduced in stellar models compared to observations.
|
n_TOF Collaboration(Torres-Sanchez, P. et al), Babiano-Suarez, V., Caballero, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2023). Measurement of the 14N(n, p) 14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV. Phys. Rev. C, 107(6), 064617–15pp.
Abstract: Background: The 14N(n, p) 14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region, and resonance region. Purpose: We aim to measure the 14N(n, p) 14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and provide calculations of Maxwellian averaged cross sections (MACS). Method: We apply the time-of-flight technique at Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n, & alpha;) 7Li and 235U(n, f ) reactions are used as references. Two detection systems are run simultaneously, one on beam and another off beam. Resonances are described with the R-matrix code SAMMY. Results: The cross section was measured from subthermal energy to 800 keV, resolving the first two resonances (at 492.7 and 644 keV). A thermal cross section was obtained (1.809 & PLUSMN; 0.045 b) that is lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations. A 1/v energy dependence of the cross section was confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed determination of the 14N(n, p) cross section over a wide energy range for the first time. We have obtained cross sections with high accuracy (2.5%) from subthermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
|