Garcia, A. R., Mendoza, E., Cano-Ott, D., Nolte, R., Martinez, T., Algora, A., et al. (2017). New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors. Nucl. Instrum. Methods Phys. Res. A, 868, 73–81.
Abstract: The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.
|
Modamio, V., Valiente-Dobon, J. J., Jaworski, G., Huyuk, T., Triossi, A., Egea, J., et al. (2015). Digital pulse-timing technique for the neutron detector array NEDA. Nucl. Instrum. Methods Phys. Res. A, 775, 71–76.
Abstract: A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.
|
Agramunt, J. et al, Tain, J. L., Albiol, F., Algora, A., Domingo-Pardo, C., Jordan, M. D., et al. (2016). Characterization of a neutron-beta counting system with beta-delayed neutron emitters. Nucl. Instrum. Methods Phys. Res. A, 807, 69–78.
Abstract: A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known beta-delayed neutron emission properties. The setup consists of BELEN-20, a 4 pi-neutron counter with twenty He-3 proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for beta counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, beta and beta-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accuracy of neutron emission probabilities is discussed. A new accurate value of the neutron emission probability for the important delayed-neutron precursor I-137 was obtained, P-n = 7.76(14)%.
|
Alvarez, V., Herrero-Bosch, V., Esteve, R., Laing, A., Rodriguez, J., Querol, M., et al. (2019). The electronics of the energy plane of the NEXT-White detector. Nucl. Instrum. Methods Phys. Res. A, 917, 68–76.
Abstract: This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.
|
Jaworski, G., Palacz, M., Nyberg, J., de Angelis, G., de France, G., Di Nitto, A., et al. (2012). Monte Carlo simulation of a single detector unit for the neutron detector array NEDA. Nucl. Instrum. Methods Phys. Res. A, 673, 64–72.
Abstract: A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.
|