Home | [11–20] << 21 22 23 24 25 26 27 28 29 30 >> [31–40] |
![]() |
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., Leon, G., Jawad, A., & Pellicer, C. E. (2024). Charged black holes with Yukawa potential. Phys. Dark Universe, 46, 101711–16pp.
Abstract: This study derives a novel family of charged black hole solutions featuring short- and long-range modifications. These are achieved through a Yukawa-like gravitational potential modification and a nonsingular electric potential incorporation. The short-range corrections encode quantum gravity effects, while the long-range adjustments simulate gravitational effects akin to those attributed to dark matter. Our investigation reveals that the total mass of the black hole undergoes corrections owing to the apparent presence of dark matter mass and the self-adjusted electric charge mass. Two distinct solutions are discussed: a regular black hole solution characterizing small black holes, where quantum effects play a crucial role, and a second solution portraying large black holes at considerable distances, where the significance of Yukawa corrections comes into play. Notably, these long-range corrections contribute to an increase in the total mass and hold particular interest as they can emulate the role of dark matter. Finally, we explore the phenomenological aspects of the black hole. Specifically, we examine the influence of electric charge and Yukawa parameters on thermodynamic quantities, the quasinormal modes for the charged scalar perturbations as well as for the vector perturbations, analysis of the geodesics of light/massive particles, and the accretion of matter onto the charged black hole solution.
|
Ghedini, P., Hajjar, R., & Mena, O. (2024). Redshift-space distortions corner interacting dark energy. Phys. Dark Universe, 46, 101671–10pp.
Abstract: Despite the fact that the Lambda CDM model has been highly successful over the last few decades in providing an accurate fit to a broad range of cosmological and astrophysical observations, different intriguing tensions and anomalies emerged at various statistical levels. Given the fact that the dark energy and the dark matter sectors remain unexplored, the answer to some of the tensions may rely on modifications of these two dark sectors. This manuscript explores the important role of the growth of structure in constraining non-standard cosmologies. In particular, we focus on the interacting dark energy (IDE) scenario, where dark matter and dark energy interact non-gravitationally. We aim to place constraints on the phenomenological parameters of these alternative models, by considering different datasets related to a number of cosmological measurements, to achieve a complementary analysis. A special emphasis is devoted to redshift-space distortion measurements (RSD), whose role in constraining beyond the standard paradigm models has not been recently highlighted. These observations indeed have a strong constraining power, rendering all parameters to their Lambda CDM canonical values, and therefore leaving little room for the IDE models explored here.
|
Weber, M. et al, & Esperante, D. (2024). DONES EVO: Risk mitigation for the IFMIF-DONES facility. Nucl. Mater. Energy, 38, 101622–5pp.
Abstract: The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., & Leon, G. (2024). Dark matter signatures of black holes with Yukawa potential. Phys. Dark Universe, 44, 101500–20pp.
Abstract: This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
|
Heidari, N., Hassanabadi, H., Araujo Filho, A. A., Kriz, J., Zare, S., & Porfirio, P. J. (2024). Gravitational signatures of a non-commutative stable black hole. Phys. Dark Universe, 43, 101382–13pp.
Abstract: This work investigates several key aspects of a non-commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the quasinormal modes of massless scalar perturbations using two approaches: the WKB approximation and the Poschl-Teller fitting method. Our results indicate that stronger non-commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non-commutative parameter (R) significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of (R) correspond to larger shadow radii, and provide some constraints on (R) applying the observation of Sgr A* from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.
Keywords: Non-commutativity; Black hole; Shadows; Geodesics
|