|   | 
Details
   web
Records
Author Gargalionis, J.; Herrero-Garcia, J.; Schmidt, M.A.
Title Model-independent estimates for loop-induced baryon-number-violating nucleon decays Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (down) 182 - 52pp
Keywords Baryon/Lepton Number Violation; SMEFT
Abstract Baryon number is an accidental symmetry of the Standard Model (SM) Lagrangian that so far has been measured to be exactly preserved, although it is expected to be violated at higher energies. In this work we compute order-of-magnitude estimates for the matching contributions of generic ultraviolet models to effective operators that generate nucleon decay processes. This is done in a systematic and automated way using operators constructed from SM fields up to dimension nine and working in a framework that has proved useful in the study of lepton-number violation. For each of the operators we derive estimates for the rates of different nucleon-decay channels. These allow us to establish model-independent lower bounds on the underlying new-physics scale and identify potential correlations between the various decay modes. The results are most relevant for families of models that generate the considered operator. This analysis is especially timely given the expected future sensitivities in numerous experiments such as Hyper-K, DUNE, JUNO and THEIA.
Address [Gargalionis, John; Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: john.gargalionis@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001257098800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6166
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Study of Bc+ → χc π+ decays Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (down) 173 - 30pp
Keywords B Physics; Branching fraction; Hadron-Hadron Scattering
Abstract A study of B-c(+) -> chi(c) pi(+) decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13TeV, corresponding to an integrated luminosity of 9 fb(-1). The decay B-c(+) -> chi(c2)pi(+) is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the B-c(+) -> J/psi pi(+) decay is measured to be BBc+ ->chi c2 pi+/BBc+ -> (J/psi pi+) = 0.37 +/- 0.06 +/- 0.02 +/- 0.01, where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the chi(c2) -> J/psi gamma branching fraction. No significant B-c(+) -> chi(+)(c1 pi) signal is observed and an upper limit for the relative branching fraction for the B-c(+) -> chi(c1)pi(+) and B-c(+) -> chi(c2)pi(+) decays of BBc+ ->chi c1 pi+/BBc+ -> chi(c2)pi(+) < 0.49 is set at the 90% confidence level.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Liu, F. L.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: Ivan.Belyaev@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001183170300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6044
Permanent link to this record
 

 
Author Aebischer, J. et al; Vicente, A.
Title Computing tools for effective field theories Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 2 Pages (down) 170 - 59pp
Keywords
Abstract In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.
Address [Aebischer, Jason; Allwicher, Lukas; Stoffer, Peter] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: matteo.fael@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001189739500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6052
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Measurement of the production cross-section of J/ψ and ψ(2S) mesons in pp collisions at √s=13 TeV with the ATLAS detector Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 2 Pages (down) 169 - 30pp
Keywords
Abstract Measurements of the differential production cross-sections of prompt and non-prompt J/psi and psi(2S) mesons with transverse momenta between 8 and 360 GeV and rapidity in the range vertical bar y vertical bar < 2 are reported. Furthermore, measurements of the non-prompt fractions of J/psi and psi(2S), and the prompt and non-prompt psi(2S)-to-J/psi production ratios, are presented. The analysis is performed using 140 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.
Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001185540100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6105
Permanent link to this record
 

 
Author Giachino, A.; van Hameren, A.; Ziarko, G.
Title A new subtraction scheme at NLO exploiting the privilege of k<sub>T</sub>-factorization Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (down) 167 - 39pp
Keywords Higher-Order Perturbative Calculations; Deep Inelastic Scattering or Small-x Physics; Factorization; Renormalization Group
Abstract We present a subtraction method for the calculation of real-radiation integrals at NLO in hybrid k(T)-factorization. The main difference with existing methods for collinear factorization is that we subtract the momentum recoil, occurring due to the mapping from an (n + 1)-particle phase space to an n-particle phase space, from the initial-state momenta, instead of distributing it over the final-state momenta.
Address [Giachino, Alessandro; van Hameren, Andreas; Ziarko, Grzegorz] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland, Email: Alessandro.Giachino@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001254801000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6175
Permanent link to this record