|   | 
Details
   web
Records
Author Geng, L.S.; Oset, E.
Title Novel nonperturbative approach for radiative (B)over-bar(0)((B)over-bar(s)(0)) -> J/psi gamma decays Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 1 Pages (up) 014018 - 11pp
Keywords
Abstract Radiative (B) over bar (0)((B) over bar (0)(s)) -> J/psi gamma decays provide an interesting case to test our understanding of ( non) perturbative QCD and eventually to probe physics beyond the standard model. Recently, the LHCb Collaboration reported an upper bound, updating the results of the BABAR Collaboration. Previous theoretical predictions based on QCD factorization or perturbative QCD have shown large variations due to different treatment of nonfactorizable contributions and meson-photon transitions. In this paper, we report on a novel approach to estimate the decay rates, which is based on a recently proposed model for B decays and the vector meson dominance hypothesis, widely tested in the relevant energy regions. The predicted branching ratios are Br[(B) over bar (0) -> J/psi gamma] = (3.50 +/- 0.34(-0.63)(+1.12)) x 10(-8) and Br[(B) over bar (0)(s) -> J/psi gamma] = (7.20 +/- 0.68(-1.30)(+2.31)) x 10(-7). The first uncertainty is systematic and the second is statistical, originating from the experimental (B) over bar (0)(s) -> J/psi gamma branching ratio.
Address [Geng, Li-Sheng] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000380111000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2767
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.
Title Nature of the lowest-lying odd parity charmed baryon Lambda(c)(2595) and Lambda(c)(2625) resonances Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 1 Pages (up) 014018 - 17pp
Keywords
Abstract We study the structure of the Lambda(c) (2595) and Lambda(c) (2625) resonances in the framework of an effective field theory consistent with heavy quark spin and chiral symmetries, which incorporates the interplay between Sigma(()(c)*() )pi – ND(*()) baryon-meson degrees of freedom (d.o.f.) and bare P-wave c (u) over bard quark-model states. We show that these two resonances are not heavy quark spin symmetry partners. The J(P) = 3/2(-) Lambda(c) (2625) should be viewed mostly as a dressed three-quark state, whose origin is determined by a bare state, predicted to lie very close to the mass of the resonance. The J(P) = 1/2(-) Lambda(c) (2595) seems to have, however, a predominant molecular structure. This is because it is either the result of the chiral Sigma(c)pi interaction, whose threshold is located much closer than the mass of the bare three-quark state, or because the light d.o.f. in its inner structure are coupled to the unnatural 0(-) quantum numbers. We show that both situations can occur depending on the renormalization procedure used. We find some additional states, but the classification of the spectrum in terms of heavy quark spin symmetry is difficult, despite having used interactions that respect this symmetry. This is because the bare quark-model state and the Sigma(c)pi threshold are located extraordinarily close to the Lambda(c) (2625) and Lambda(c) (2595), respectively, and hence they play totally different roles in each sector.
Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000509494900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4272
Permanent link to this record
 

 
Author Gonzalez-Alonso, M.; Pich, A.; Prades, J.
Title Pinched weights and duality violation in QCD sum rules: A critical analysis Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 1 Pages (up) 014019 - 7pp
Keywords
Abstract We analyze the so-called pinched weights, that are generally thought to reduce the violation of quarkhadron duality in finite-energy sum rules. After showing how this is not true in general, we explain how to address this question for the left-right correlator and any particular pinched weight, taking advantage of our previous work [1], where the possible high-energy behavior of the left-right spectral function was studied. In particular, we show that the use of pinched weights allows to determine with high accuracy the dimension six and eight contributions in the operator-product expansion, O-6 = (-4.3(-0.7)(+0.9)) x 10(-3) GeV6 and O-8 = (-7.2(-5.3)(+4.2)) x 10(-3) GeV8.
Address [Gonzalez-Alonso, Martin; Pich, Antonio] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280470200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 403
Permanent link to this record
 

 
Author Vijande, J.; Valcarce, A.; Richard, J.M.
Title Stability of hexaquarks in the string limit of confinement Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 1 Pages (up) 014019 - 6pp
Keywords
Abstract The stability of systems containing six quarks or antiquarks is studied within a simple string model inspired by the strong-coupling regime of quantum chromodynamics and used previously for tetraquarks and pentaquarks. We discuss both six-quark (q(6)) and three-quark-three-antiquark (q(3)($) over bar (3)) states. The quarks are assumed to be distinguishable and thus not submitted to antisymmetrization. It is found that the ground state of (q(6)) is stable against dissociation into two isolated baryons. For the case of (q(3)($) over bar (3)), our results indicate the existence of a bound state very close to the threshold. The investigations are extended to (q(3)Q(3)) and (Q(3) ($) over bar (3)) systems with two different constituent masses, and their stability is discussed as a function of the mass ratio.
Address [Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000299293600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 883
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Ruiz Arriola, E.
Title Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages (up) 014020 - 7pp
Keywords
Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6089
Permanent link to this record