toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguiar, P.; Rafecas, M.; Ortuño, J.E.; Kontaxakis, G.; Santos, A.; Pavia, J.; Rosetti, M. doi  openurl
  Title Geometrical and Monte Carlo projectors in 3D PET reconstruction Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 11 Pages (up) 5691-5702  
  Keywords 3D PET; iterative reconstruction; list-mode reconstruction; ray-tracing techniques; Monte Carlo simulation; system response matrix  
  Abstract Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under consideration involves an extensive model of the system response matrix based on Monte Carlo simulations and is computed off-line and stored on disk. Methods: Comparisons were performed using simulated and experimental data of the commercial small animal PET scanner rPET. Results: The results demonstrate that the orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions yield better images in terms of contrast and spatial resolution than those obtained after using the conventional method and the multiray-based S-RT. Furthermore, the Monte Carlo-based method yields slight improvements in terms of contrast and spatial resolution with respect to these geometrical projectors. Conclusions: The orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions represent satisfactory alternatives to factorizing the system matrix or to the conventional on-the-fly ray-tracing methods for list-mode reconstruction, where an extensive modeling based on Monte Carlo simulations is unfeasible.  
  Address [Aguiar, Pablo] Univ Santiago de Compostela, Dept Fis Particulas, Complexo Hosp Univ Santiago de Compostela, Fdn IDICHUS IDIS, Santiago De Compostela, Spain, Email: pablo.aguiar.fernandez@sergas.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283747600015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 338  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsun, T.S. url  doi
openurl 
  Title A solution to the strong CP problem transforming the theta angle to the KM CP-violating phase Type Journal Article
  Year 2010 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 25 Issue 32 Pages (up) 5897-5911  
  Keywords Strong CP phase; CKM matrix; CP violation  
  Abstract It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for theta of order unity, a Jarlskog invariant typically of order 10(-5), as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288429300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 536  
Permanent link to this record
 

 
Author Oliver, J.F.; Rafecas, M. doi  openurl
  Title Improving the singles rate method for modeling accidental coincidences in high-resolution PET Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 22 Pages (up) 6951-6971  
  Keywords  
  Abstract Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from the true random rate are of the order of 1% or less. In addition, in the case of conventional energy window STi results reproduce ST results and therefore the former can be used to obtain the true random rate.  
  Address [Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, E-46003 Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283789700025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 344  
Permanent link to this record
 

 
Author Llosa, G.; Barrio, J.; Lacasta, C.; Bisogni, M.G.; Del Guerra, A.; Marcatili, S.; Barrillon, P.; Bondil-Blin, S.; de la Taille, C.; Piemonte, C. doi  openurl
  Title Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 23 Pages (up) 7299-7315  
  Keywords  
  Abstract The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm x 12 mm x 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal.  
  Address [Llosa, G.; Barrio, J.; Lacasta, C.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284261000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 321  
Permanent link to this record
 

 
Author Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Verdu-Andres, S. url  doi
openurl 
  Title Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources Type Journal Article
  Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 5 Issue Pages (up) C09004 - 19pp  
  Keywords Instrumentation for particle-beam therapy; Instrumentation for hadron therapy; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)  
  Abstract Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.  
  Address [Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Andres, S. Verdu] TERA Fdn, I-28100 Novara, Italy, Email: Adriano.Garonna@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283796100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva