n_TOF Collaboration(Alcayne, V. et al), Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2024). Measurement and analysis of the 246Cm and 248Cm neutron capture cross-sections at the EAR2 of the n_TOF facility at CERN. Eur. Phys. J. A, 60(12), 246–20pp.
Abstract: The 246Cm(n,γ) and 248Cm(n,γ) cross-sections have been measured at the Experimental Area 2 (EAR2) of the nTOF facility at CERN with three C6D6 detectors. This measurement is part of a collective effort to improve the capture cross-section data for Minor Actinides (MAs), which are required to estimate the production and transmutation rates of these isotopes in light water reactors and innovative reactor systems. In particular, the neutron capture in 246Cm and 248Cm open the path for the formation of other Cm isotopes and heavier elements such as Bk and Cf and the knowledge of (n,γ) cross-sections of these Cm isotopes plays an important role in the transport, transmutation and storage of the spent nuclear fuel. The reactions 246Cm(n,γ) and 248Cm(n,γ) have been the two first capture measurements analyzed at nTOF EAR2. Until this experiment and two recent measurements performed at J-PARC, there was only one set of data of the capture cross-sections of 246Cm and 248Cm, that was obtained in 1969 in an underground nuclear explosion experiment. In the measurement at n_TOF a total of 13 resonances of 246Cm between 4 and 400 eV and 5 of 248Cm between 7 and 100 eV have been identified and fitted. The radiative kernels obtained for 246Cm are compatible with JENDL-5, but some of them are not with JENDL-4, which has been adopted by JEFF-3.3 and ENDF/B-VIII.0. The radiative kernels obtained for the first three 248Cm resonances are compatible with JENDL-5, however, the other two are not compatible with any other evaluation and are 20% and 60% larger than JENDL-5.
|
n_TOF Collaboration(Lederer-Woods, C. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2022). Ge-74(n, gamma) cross section below 70 keV measured at n_TOF CERN. Eur. Phys. J. A, 58(12), 239–9pp.
Abstract: Neutron capture reaction cross sections on Ge-74 are of importance to determine Ge-74 production during the astrophysical slow neutron capture process. We present new resonance data on Ge-74(n, gamma ) reactions below 70 keV neutron energy. We calculate Maxwellian averaged cross sections, combining our data below 70 keV with evaluated cross sections at higher neutron energies. Our stellar cross sections are in agreement with a previous activation measurement performed at Forschungszentrum Karlsruhe by Marganiec et al., once their data has been re-normalised to account for an update in the reference cross section used in that experiment.
|
n_TOF Collaboration(Sabate-Gilarte et al.), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2017). High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERNx. Eur. Phys. J. A, 53(10), 210–13pp.
Abstract: A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutronconverting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197 Au foils in the beam.
|
n_TOF Collaboration(Weiss, C. et al), Domingo-Pardo, C., Giubrone, G., & Tain, J. L. (2014). The (n,alpha) Reaction in the s-process Branching Point Ni-59. Nucl. Data Sheets, 120, 208–210.
Abstract: The (n,alpha) reaction in the radioactive Ni-59 is of relevance in nuclear astrophysics as Ni-59 can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the n_TOF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the Ni-59(n,alpha)Fe-56 cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here.
|
n_TOF Collaboration(Lederer, C. et al), Giubrone, G., Domingo-Pardo, C., & Tain, J. L. (2014). Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process. Nucl. Data Sheets, 120, 201–204.
Abstract: Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n_TOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.
|