toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ballester, F.; Granero, D.; Perez-Calatayud, J.; Venselaar, J.L.M.; Rivard, M.J. doi  openurl
  Title Study of encapsulated Tm-170 sources for their potential use in brachytherapy Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 4 Pages (down) 1629-1637  
  Keywords brachytherapy; cancer; dosimetry; prosthetics; radioisotopes; thulium  
  Abstract Methods: The authors have assumed a theoretical Tm-170 cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR Ir-192 brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron Tm-170 spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of Tm-170 encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a Tm-170 source were compared to those for Ir-192 and Yb-169 for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose was significant up to 4 mm from the source center compared to the photon contribution. The dose-rate constant Lambda of the cylindrical source was 1.23 cGy h(-1) U-1. The behavior of the radial dose function showed promise for applications in brachytherapy. Due to the electron spectrum, the anisotropy was large for r < 6 mm. Variations in manufacturing tolerances did not significantly influence the final dosimetry data when expressed in cGy h(-1) U-1. For typical capsule dimensions, maximum reference dose rates of about 0.2, 10, and 2 Gy min(-1) would then be obtained for Tm-170, Ir-192, and Yb-169, respectively, resulting in treatment times greater than those for HDR Ir-192 brachytherapy. Conclusions: The dosimetric characteristics of source designs exploiting the low photon energy of Tm-170 were studied for potential application in HDR-brachytherapy. Dose-rate distributions were obtained for cylindrical and simplified spherical Tm-170 source designs (stainless steel and platinum capsule materials) using MC calculations. Despite the high activity of Tm-170, calculated treatment times were much longer than for Ir-192.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276211200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 478  
Permanent link to this record
 

 
Author Albiol, A.; Corbi, A.; Albiol, F. doi  openurl
  Title Automatic intensity windowing of mammographic images based on a perceptual metric Type Journal Article
  Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 44 Issue 4 Pages (down) 1369-1378  
  Keywords contrast stretching; Gabor filtering; human visual system; mammogram; mutual information; window level/width  
  Abstract Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is the most commonly performed task in daily screening and has a direct impact on diagnosis and the time involved in the process. Methods: The authors present a human visual system and perception-based algorithm named GRAIL (Gabor-relying adjustment of image levels). GRAIL initially measures a mammogram's quality based on the MI between the original instance and its Gabor-filtered derivations. From this point on, the algorithm performs an automatic intensity windowing process that outputs the WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They comprise correlations and an ANOVA analysis with the manual IW levels established by a group of radiologists. A complete MATLAB implementation of GRAIL is available at . Results: Auto-leveled images show superior quality both perceptually and objectively compared to their full intensity range and compared to the application of other common methods like global contrast stretching (GCS). The correlations between the human determined intensity values and the ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5 s per image. Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the WL/WW of mammographic images. This correction seeks the representation that maximizes the amount of graphical information contained in each image. The presented technique can contribute to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the beginning, an optimal and customized windowing setting for each mammogram.  
  Address [Albiol, Alberto] Univ Politecn Valencia, iTeam Res Inst, Valencia, Spain, Email: alberto.corbi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400572700016 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3122  
Permanent link to this record
 

 
Author Beaulieu, L.; Ballester, F.; Granero, D.; Tedgren, A.C.; Haworth, A.; Lowenstein, J.R.; Ma, Y.Z.; Mourtada, F.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.L.; Thomson, R.M.; Verhaegen, F.; Fonseca, G.; Vijande, J. doi  openurl
  Title AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy Type Journal Article
  Year 2023 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 50 Issue 8 Pages (down) e946–e960  
  Keywords brachytherapy; commissioning; dose calculation; model-based dose calculation; Monte Carlo; TG-186  
  Abstract The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.  
  Address [Beaulieu, Luc; Ma, Yunzhi] CHU Quebec Univ Laval, Serv Phys Med & Radioprotect, Quebec City, PQ, Canada, Email: beaulieu@phy.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026540300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5579  
Permanent link to this record
 

 
Author Rivard, M.J.; Granero, D.; Perez-Calatayud, J.; Ballester, F. doi  openurl
  Title Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 2 Pages (down) 869-876  
  Keywords biomedical materials; brachytherapy; dosimetry; iodine; iridium; Monte Carlo methods; palladium; radioisotopes  
  Abstract Methods: For Ir-192, I-125, and Pd-103, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of Ir-192, I-125, and Pd-103 spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for Ir-192, I-125, and Pd-103, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.  
  Address [Rivard, Mark J.] Tufts Univ, Sch Med, Dept Radiat Oncol, Boston, MA 02111 USA, Email: mrivard@tuftsmedicalcenter.org  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274075600048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 504  
Permanent link to this record
 

 
Author Fletcher, E.M.; Ballester, F.; Beaulieu, L.; Morrison, H.; Poher, A.; Rivard, M.J.; Sloboda, R.S.; Vijande, J.; Thomson, R.M. doi  openurl
  Title Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations Type Journal Article
  Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 51 Issue Pages (down) 694-706  
  Keywords Monte Carlo; ocular brachytherapy; treatment planning  
  Abstract PurposeA joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs).Acquisition and Validation MethodsFive test cases are developed: (1) a single model 6711 125I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16-mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within & SIM;2.5% and global agreement was & SIM;2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and & SIM;20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5.Data Format and Usage NotesDose distributions for each set of MC and TPS calculations are available online () along with input files and all other information necessary to repeat the calculations.Potential ApplicationsThese data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.  
  Address [Fletcher, Elizabeth M.; Thomson, Rowan M.] Carleton Univ, Phys Dept, Carleton Lab Radiotherapy Phys, Ottawa, ON, Canada, Email: rthomson@physics.carleton.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001058112300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5632  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva