toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Das, S.; de Putter, R.; Linder, E.V.; Nakajima, R. url  doi
openurl 
  Title Weak lensing cosmology beyond Lambda CDM Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages (down) 23pp  
  Keywords dark energy experiments; cosmological parameters from LSS; weak gravitational lensing; dark energy theory  
  Abstract Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth – dynamical dark energy, extended gravity, neutrino masses, and spatial curvature – we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas tor, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ACDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.  
  Address [Das, Sudeep; Linder, Eric V.; Nakajima, Reiko] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA, Email: sdas@hep.anl.gov;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310833100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1228  
Permanent link to this record
 

 
Author Ahn, C.P. et al; de Putter, R. url  doi
openurl 
  Title The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey Type Journal Article
  Year 2012 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 203 Issue 2 Pages (down) 21 - 13pp  
  Keywords atlases; catalogs; surveys  
  Abstract The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z similar to 0.52), 102,100 new quasar spectra (median z similar to 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T-eff < 5000 K and in metallicity estimates for stars with [Fe/H] > -0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December.  
  Address [Alexandroff, Rachael; Blake, Cullen H.; Carr, Michael A.; Gunn, James E.; Knapp, Gillian R.; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Parihar, Prachi; Pattarakijwanich, Petchara; Strauss, Michael A.; Zinn, Joel C.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312100500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1273  
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V. url  doi
openurl 
  Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages (down) 019 - 20pp  
  Keywords modified gravity; dark energy theory  
  Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.  
  Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286930700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 533  
Permanent link to this record
 

 
Author de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J. url  doi
openurl 
  Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages (down) 019 - 31pp  
  Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations  
  Abstract Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.  
  Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303665000019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1016  
Permanent link to this record
 

 
Author Ho, S. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 761 Issue 1 Pages (down) 14 - 24pp  
  Keywords cosmological parameters; dark energy; dark matter; distance scale  
  Abstract The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.  
  Address [Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwho@lbl.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1263  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva