toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume 365 Issue Pages (down) 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
 

 
Author Oliver, S.; Vijande, J.; Tejedor-Aguilar, N.; Miro, R.; Rovira-Escutia, J.J.; Ballester, F.; Juste, B.; Carmona, V.; Felici, G.; Verdu, G.; Sanchis, E.; Conde, A.; Perez-Calatayud, J. doi  openurl
  Title Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 212 Issue Pages (down) 111102 - 6pp  
  Keywords Intraoperative radiotherapy; Electron portable LinAc; Flattening filter; Dosimetry; Monte Carlo  
  Abstract Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.  
  Address [Oliver, S.; Miro, R.; Juste, B.; Verdu, G.] Univ Polite cn Vale ncia, Inst Segur Ind Radiofis & Medioambiental ISIRYM, Cami Vera S-N, Valencia 46022, Spain, Email: gverdu@iqn.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026194900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5578  
Permanent link to this record
 

 
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V. doi  openurl
  Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
  Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 298 Issue Pages (down) 109091 - 11pp  
  Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh  
  Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001172840800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6077  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S. doi  openurl
  Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
  Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 267 Issue Pages (down) 108065 - 12pp  
  Keywords Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics  
  Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.  
  Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000678508900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4907  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages (down) 107477 - 15pp  
  Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE  
  Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564482200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4520  
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Mansour, I.; Rivard, M.J.; Ballester, F.; Mainegra-Hing, E.; Thomson, R.M.; Vijande, J. url  doi
openurl 
  Title A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations Type Journal Article
  Year 2021 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 66 Issue 10 Pages (down) 105014 - 14pp  
  Keywords Monte Carlo simulations; brachytherapy; low energy physics; photoelectric effect  
  Abstract Purpose. To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV). Methods. MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties. Results. A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2). Conclusions. In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.  
  Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000655291500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4847  
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K. url  doi
openurl 
  Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
  Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica  
  Volume 118 Issue Pages (down) 103301 - 9pp  
  Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy  
  Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.  
  Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-1797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178648400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5990  
Permanent link to this record
 

 
Author Etxebeste, A.; Dauvergne, D.; Fontana, M.; Letang, J.M.; Llosa, G.; Muñoz, E.; Oliver, J.F.; Testa, E.; Sarrut, D. doi  openurl
  Title CCMod: a GATE module for Compton camera imaging simulation Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 5 Pages (down) 055004 - 17pp  
  Keywords Monte Carlo; simulation; gamma imaging; Compton camera  
  Abstract Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.  
  Address [Etxebeste, A.; Letang, J. M.; Sarrut, D.] Univ Lyon 1, Univ Lyon, CREATIS, CNRS UMR5220,Inserm U1044,INSA Lyon, Lyon, France, Email: ane.etxebeste@creatis.insa-lyon.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519034800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4321  
Permanent link to this record
 

 
Author Etxebeste, A.; Barrio, J.; Bernabeu, J.; Lacasta, C.; Llosa, G.; Muñoz, E.; Ros, A.; Oliver, J.F. doi  openurl
  Title Study of sensitivity and resolution for full ring PET prototypes based on continuous crystals and analytical modeling of the light distribution Type Journal Article
  Year 2019 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 64 Issue 3 Pages (down) 035015 - 17pp  
  Keywords continuous crystals; NEMA NU 4-2008; positron emission tomography (PET); Monte Carlo simulations; image reconstruction; depth of interaction  
  Abstract Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.  
  Address [Etxebeste, Ane; Barrio, John; Bernabeu, Jose; Lacasta, Carlos; Llosa, Gabriela; Munoz, Enrique; Ros, Ana; Oliver, Josef F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: ane.etxebeste@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457182500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3897  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 41 Issue 2 Pages (down) 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva