|   | 
Details
   web
Records
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages (down) P08006 - 33pp
Keywords Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
Address [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001084390900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5764
Permanent link to this record
 

 
Author Andricek, L.; Boronat, M.; Fuster, J.; Garcia, I.; Gomis, P.; Marinas, C.; Ninkovic, J.; Perello, M.; Villarejo, M.A.; Vos, M.
Title Integrated cooling channels in position-sensitive silicon detectors Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages (down) P06018 - 15pp
Keywords Particle tracking detectors; Particle tracking detectors (Solid-state detectors)
Abstract We present an approach to construct position-sensitive silicon detectors with an integrated cooling circuit. Tests on samples demonstrate that a very modest liquid flow very effectively cool the devices up to a power dissipation of over 10 W/cm(2). The liquid flow is found to have a negligible impact on the mechanical stability. A finite-element simulation predicts the cooling performance to an accuracy of approximately 10%.
Address [Andricek, L.; Ninkovic, J.] Max Plank Gesell, HalbLeiterLabor, Munich, Germany, Email: ignacio.garcia@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000379239700030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2760
Permanent link to this record
 

 
Author Aplin, S.; Boronat, M.; Dannheim, D.; Duarte, J.; Gaede, F.; Ruiz-Jimeno, A.; Sailer, A.; Valentan, M.; Vila, I.; Vos, M.
Title Forward tracking at the next e(+)e(-) collider part II: experimental challenges and detector design Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages (down) T06001 - 26pp
Keywords Particle tracking detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)
Abstract We present the second in a series of studies into the forward tracking system for a future linear e(+)e(-) collider with a center-of-mass energy in the range from 250 GeV to 3 TeV. In this note a number of specific challenges are investigated, which have caused a degradation of the tracking and vertexing performance in the forward region in previous experiments. We perform a quantitative analysis of the dependence of the tracking performance on detector design parameters and identify several ways to mitigate the performance loss for charged particles emitted at shallow angle.
Address [Aplin, S.; Gaede, F.] Deutsche Elektronen Synchrotron, D-22607 Hamburg, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000321627400024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1503
Permanent link to this record
 

 
Author Kuehn, S. et al; Bernabeu, J.; Lacasta, C.; Marco-Hernandez, R.; Santoyo, D.; Solaz, C.; Soldevila, U.
Title Prototyping of hybrids and modules for the forward silicon strip tracking detector for the ATLAS Phase-II upgrade Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages (down) P05015 - 26pp
Keywords Si microstrip and pad detectors; Particle tracking detectors (Solid-state detectors); Solid state detectors
Abstract For the High-Luminosity upgrade of the Large Hadron Collider an increased instantaneous luminosity of up to 7.5 . 10(34) cm(-2) s(-1), leading to a total integrated luminosity of up to 3000 fb(-1), is foreseen. The current silicon and transition radiation tracking detectors of the ATLAS experiment will be unable to cope with the increased track densities and radiation levels, and will need to be replaced. The new tracking detector will consist entirely of silicon pixel and strip detectors. In this paper, results on the development and tests of prototype components for the new silicon strip detector in the forward regions (end-caps) of the ATLAS detector are presented. Flex-printed readout boards with fast readout chips, referred to as hybrids, and silicon detector modules are investigated. The modules consist of a hybrid glued onto a silicon strip sensor. The channels on both are connected via wire-bonds for readout and powering. Measurements of important performance parameters and a comparison of two possible readout schemes are presented. In addition, the assembly procedure is described and recommendations for further prototyping are derived.
Address [Kuehn, S.] CERN, European Org Nucl Res, Expt Phys, Route Meyrin 385, CH-1211 Geneva 23, Switzerland, Email: susanne.kuehn@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000405076000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3221
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages (down) P05006 - 16pp
Keywords Radiation calculations; Time projection Chambers (TPC); Double-beta decay detectors; Particle tracking detectors (Gaseous detectors)
Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 x 10(-4) counts keV(-1) kg(-1) y(-1), have been identified.
Address [Cebrian, S.; Dafni, T.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Ortiz de Solorzano, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain, Email: scebrian@unizar.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357993300038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2305
Permanent link to this record