|   | 
Details
   web
Records
Author Caputo, A.; Regis, M.; Taoso, M.; Witte, S.J.
Title Detecting the stimulated decay of axions at radio frequencies Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (down) 027 - 22pp
Keywords axions; dark matter theory; dark matter detectors; dwarfs galaxies
Abstract Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints (and possibly favored by stellar cooling), we find the signal to be within the reach of next-generation radio telescopes such as the Square Kilometer Array.
Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea0292@hotmail.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000461450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3944
Permanent link to this record
 

 
Author Bertone, G.; Bozorgnia, N.; Kim, J.S.; Liem, S.; McCabe, C.; Otten, S.; Ruiz de Austri, R.
Title Identifying WIMP dark matter from particle and astroparticle data Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (down) 026 - 42pp
Keywords dark matter detectors; dark matter experiments; dark matter theory
Abstract One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
Address [Bertone, Gianfranco; Bozorgnia, Nassim; Liem, Sebastian] Univ Amsterdam, GRAPPA Inst, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: g.bertone@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000427501000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3522
Permanent link to this record
 

 
Author Blanco, C.; Escudero, M.; Hooper, D.; Witte, S.J.
Title Z ' mediated WIMPs: dead, dying, or soon to be detected? Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (down) 024 - 48pp
Keywords dark matter theory; dark matter detectors; dark matter experiments
Abstract Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of Z' mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments.
Address [Blanco, Carlos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA, Email: carlosblanco2718@uchicago.ed;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507259700021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4255
Permanent link to this record
 

 
Author Muñoz, V.; Takhistov, V.; Witte, S.J.; Fuller, G.M.
Title Exploring the origin of supermassive black holes with coherent neutrino scattering Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (down) 020 - 16pp
Keywords dark matter detectors; massive stars; neutrino astronomy; neutrino detectors
Abstract Collapsing supermassive stars (M greater than or similar to 3 x 10(4) M-circle dot) at high redshifts can naturally provide seeds and explain the origin of the supermassive black holes observed in the centers of nearly all galaxies. During the collapse of supermassive stars, a burst of non-thermal neutrinos is generated with a luminosity that could greatly exceed that of a conventional core collapse supernova explosion. In this work, we investigate the extent to which the neutrinos produced in these explosions can be observed via coherent elastic neutrino-nucleus scattering (CEvNS). Large scale direct dark matter detection experiments provide particularly favorable targets. We find that upcoming O(100) tonne-scale experiments will be sensitive to the collapse of individual supermassive stars at distances as large as O(10) Mpc.
Address [Munoz, Victor; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: victor.manuel.munoz@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000765985200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5159
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bou-Cabo, M.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages (down) 016 - 13pp
Keywords dark matter experiments; neutrino detectors; dark matter detectors; neutrino astronomy
Abstract A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.
Address [Adrian-Martineza, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.; Wilms, J.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: siladmar@upv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389860500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2902
Permanent link to this record