|   | 
Details
   web
Records
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S.
Title Constraining new physics with Borexino Phase-II spectral data Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (up) 138 - 35pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties
Abstract We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.
Address [Coloma, Pilar; Maltoni, Michele] CSIC UAM, Inst Fis Teor IFT CFTMAT, Calle Nicolas Cabrera 1315,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000829963100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5307
Permanent link to this record
 

 
Author Akhmedov, E.; Martinez-Mirave, P.
Title Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages (up) 144 - 35pp
Keywords Neutrino Interactions; Neutrino Mixing; Non-Standard Neutrino Properties
Abstract The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
Address [Akhmedov, Evgeny] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: akhmedov@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000871184000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5394
Permanent link to this record
 

 
Author Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R.
Title Neutrino structure functions from GeV to EeV energies Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 149 - 78pp
Keywords Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions
Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.
Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992767300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5559
Permanent link to this record
 

 
Author Karan, A.; Sadhukhan, S.; Valle, J.W.F.
Title Phenomenological profile of scotogenic fermionic dark matter Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (up) 185 - 34pp
Keywords Particle Nature of Dark Matter; Models for Dark Matter; Neutrino Interactions
Abstract We consider the possibility that neutrino masses arise from the exchange of dark matter states. We examine in detail the phenomenology of fermionic dark matter in the singlet-triplet scotogenic model. We explore the case of singlet-like fermionic dark matter, taking into account all coannihilation effects relevant for determining its relic abundance, such as fermion-fermion and scalar-fermion coannihilation. Although this in principle allows for dark matter below 60 GeV, the latter is in conflict with charged lepton flavour violation (cLFV) and/or collider physics constraints. We examine the prospects for direct dark matter detection in upcoming experiments up to 10 TeV. Fermion-scalar coannihilation is needed to obtain viable fermionic dark matter in the 60-100 GeV mass range. Fermion-fermion and fermion-scalar coannihilation play complementary roles in different parameter regions above 100 GeV.
Address [Karan, Anirban; Sadhukhan, Soumya; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: kanirban@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001135721300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5904
Permanent link to this record
 

 
Author NOMAD Collaboration (Samoylov, O. et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Hernando, J.
Title A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment Type Journal Article
Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 876 Issue 2 Pages (up) 339-375
Keywords Charm production; Strange quark content of the nucleon; Dimuon charm production; Neutrino interactions
Abstract We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample – about 9 x 10(6) events after all analysis cuts – and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of m(c)(m(c)) = 1.159 +/- 0.075 GeV/c(2) for the running mass of the charm quark in the (MS) over bar scheme and a strange quark sea suppression factor of kappa(s) = 0.591 +/- 0.019 at Q(2) = 20 GeV2/c(2).
Address [Bassompierre, G.; Gaillard, J. -M.; Gouanere, M.; Krasnoperov, A.; Mendiburu, J. -P.; Nedelec, P.; Pessard, H.; Sillou, D.] LAPP, Annecy, France, Email: Roberto.Petti@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000325903700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1625
Permanent link to this record