|   | 
Details
   web
Records
Author Bas i Beneito, A.; Herrero-Garcia, J.; Vatsyayan, D.
Title Multi-component dark sectors: symmetries, asymmetries and conversions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages (down) 075 - 31pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter
Abstract We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.
Address [Bas I Beneito, Arnau] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: arnau.bas@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000866484800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5380
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R.
Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 5 Issue Pages (down) 63 - 56pp
Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter
Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000416908800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3393
Permanent link to this record
 

 
Author Bozorgnia, N.; Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title Halo-independent methods for inelastic dark matter scattering Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages (down) 049 - 15pp
Keywords dark matter theory; dark matter experiments
Abstract We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.
Address [Bozorgnia, Nassim; Schwetz, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: bozorgnia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1530
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Landini, G.; Vatsyayan, D.
Title Asymmetries in extended dark sectors: a cogenesis scenario Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (down) 049 - 41pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter
Abstract The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.
Address [Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: juan.herrero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988319500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5550
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Patrick, R.; Scaffidi, A.
Title A semi-supervised approach to dark matter searches in direct detection data with machine learning Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue Pages (down) 039 - 19pp
Keywords
Abstract The dark matter sector remains completely unknown. It is therefore crucial to keep an open mind regarding its nature and possible interactions. Focusing on the case of Weakly Interacting Massive Particles, in this work we make this general philosophy more concrete by applying modern machine learning techniques to dark matter direct detection. We do this by encoding and decoding the graphical representation of background events in the XENONnT experiment with a convolutional variational autoencoder. We describe a methodology that utilizes the `anomaly score' derived from the reconstruction loss of the convolutional variational autoencoder as well as a pre-trained standard convolutional neural network, in a semi-supervised fashion. Indeed, we observe that optimum results are obtained only when both unsupervised and supervised anomaly scores are considered together. A data set that has a higher proportion of anomaly score is deemed anomalous and deserves further investigation. Contrary to classical analyses, in principle all information about the events is used, preventing unnecessary information loss. Lastly, we demonstrate the reach of learning-focused anomaly detection in this context by comparing results with classical inference, observing that, if tuned properly, these techniques have the potential to outperform likelihood-based methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5495
Permanent link to this record