|   | 
Details
   web
Records
Author Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J.
Title The seesaw portal in testable models of neutrino masses Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (down) 112 - 20pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.
Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000404625300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3196
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J.
Title How to relax the cosmological neutrino mass bound Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages (down) 049 - 18pp
Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS
Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.
Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000466578400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4001
Permanent link to this record
 

 
Author Donini, A.; Palomares-Ruiz, S.; Salvado, J.
Title Neutrino tomography of Earth Type Journal Article
Year 2019 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 15 Issue 1 Pages (down) 37-40
Keywords
Abstract Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale(1). The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrinonucleon cross-section is large enough to make the absorption probability non-negligible(2). Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profiles(3-7). This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data-one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope(8). Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth's internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control.
Address [Donini, Andrea; Palomares-Ruiz, Sergio; Salvado, Jordi] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: sergiopr@ific.uv.es
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Medium
Area Expedition Conference
Notes WOS:000454733100017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3863
Permanent link to this record
 

 
Author Bertolez-Martinez, T.; Arguelles, C.; Esteban, I.; Lopez-Pavon, J.; Martinez-Soler, I.; Salvado, J.
Title IceCube and the origin of ANITA-IV events Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (down) 005 - 24pp
Keywords Cosmic Rays; Specific BSM Phenomenology
Abstract Recently, the ANITA collaboration announced the detection of new, unsettling upgoing Ultra-High-Energy (UHE) events. Understanding their origin is pressing to ensure success of the incoming UHE neutrino program. In this work, we study their internal consistency and the implications of the lack of similar events in IceCube. We introduce a generic, simple parametrization to study the compatibility between these two observatories in Standard Model-like and Beyond Standard Model scenarios: an incoming flux of particles that interact with Earth nucleons with cross section sigma, producing particle showers along with long-lived particles that decay with lifetime iota and generate a shower that explains ANITA observations. We find that the ANITA angular distribution imposes significant constraints, and when including null observations from IceCube only iota similar to 10(-3)-10(-2) s and sigma similar to 10(-33) -10(-32) cm(2) can explain the data. This hypothesis is testable with future IceCube data. Finally, we discuss a specific model that can realize this scenario. Our analysis highlights the importance of simultaneous observations by high-energy optical neutrino telescopes and new UHE radio detectors to uncover cosmogenic neutrinos or discover new physics.
Address [Bertolez-Martinez, Toni; Salvado, Jordi] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 647, E-08028 Barcelona, Spain, Email: antoni.bertolez@fqa.ub.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001021483800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5589
Permanent link to this record