toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R. url  doi
openurl 
  Title The new (g-2)(mu) and right-handed sneutrino dark matter Type Journal Article
  Year 2022 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 974 Issue Pages (down) 115637 - 23pp  
  Keywords  
  Abstract In this paper we investigate the (g – 2)(mu) discrepancy in the context of the R-parity conserving next-to minimal supersymmetric Standard Model plus right-handed neutrinos superfields. The model has the ability to reproduce neutrino physics data and includes the interesting possibility to have the right-handed sneutrino as the lightest supersymmetric particle and a viable dark matter candidate. Since right-handed sneutrinos are singlets, no new contributions for delta a(mu) with respect to the MSSM and NMSSM are present. However, the possibility to have the right-handed sneutrino as the lightest supersymmetric particle opens new ways to escape Large Hadron Collider and direct detection constraints. In particular, we find that dark matter masses within 10 less than or similar to m((upsilon) over tildeR) less than or similar to 600 GeV are fully compatible with current experimental constraints. Remarkably, not only spectra with light sleptons are needed, but we obtain solutions with m((mu) over tilde) greater than or similar to 600 GeV in the entire dark matter mass range that could be probed by new (g – 2)(mu) data in the near future. In addition, dark matter direct detection experiments will be able to explore a sizable portion of the allowed parameter space with mvR < 300 GeV, while indirect detection experiments will be able to probe a much smaller fraction within 200 less than or similar to m((nu)over tilde>R) less than or similar to 350 GeV.  
  Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000760320700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5135  
Permanent link to this record
 

 
Author Das, A.; Mandal, S. url  doi
openurl 
  Title Bounds on the triplet fermions in type-III seesaw and implications for collider searches Type Journal Article
  Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 966 Issue Pages (down) 115374 - 33pp  
  Keywords  
  Abstract Type-III seesaw is a simple extension of the Standard Model (SM) with the SU(2)(L) triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenstates. If the triplet fermions are around the electroweak scale having sizable mixings with the SM sector allowed by the correct gauge symmetry, they can be produced at the high energy colliders leaving a variety of characteristic signatures. Based on a simple and concrete realizations of the model we employ a general parametrization for the neutrino Dirac mass matrix and perform a parameter scan to identify the allowed regions satisfying the experimental constraints from the neutrino oscillation data, the electroweak precision measurements and the lepton-flavor violating processes, respectively considering the normal and inverted neutrino mass hierarchies. These parameter regions can be probed at the different collider experiments.  
  Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646135900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4829  
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Montani, G. url  doi
openurl 
  Title Generalized Ashtekar variables for Palatini f(R) models Type Journal Article
  Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 963 Issue Pages (down) 115281 - 21pp  
  Keywords  
  Abstract We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still preserve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f( R) gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi parameter, and we describe some possible effects on the area operator stemming from such a revised theoretical framework. Finally, we compare our results with earlier studies in literature, discussing differences between metric and Palatini approaches. It is worth noting how the Hamiltonian turns out to be different in the two cases. The results can be reconciled when the analysis is performed in the Einstein frame.  
  Address [Bombacigno, Flavio] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: flavio.bombacigno@ext.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000613579500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4706  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Gutiez, D.; Izquierdo, J.M. url  doi
openurl 
  Title Extended D=3 Bargmann supergravity from a Lie algebra expansion Type Journal Article
  Year 2019 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 946 Issue Pages (down) 114706 - 14pp  
  Keywords  
  Abstract In this paper we show how the method of Lie algebra expansions may be used to obtain, in a simple way, both the extended Bargmann Lie superalgebra and the Chern-Simons action associated to it in three dimensions, starting from D = 3, N = 2 superPoincare and its corresponding Chern-Simons supergravity. (C) 2019 The Author(s). Published by Elsevier B.V.  
  Address [de Azcarraga, J. A.] CSIC UVEG, Dept Fis Teor, Valencia 46100, Spain, Email: azcarrag@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487935600012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4156  
Permanent link to this record
 

 
Author Bandos, I.A.; de Azcarraga, J.A.; Meliveo, C. url  doi
openurl 
  Title Extended supersymmetry in massless conformal higher spin theory Type Journal Article
  Year 2011 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 853 Issue 3 Pages (down) 760-776  
  Keywords Higher spin theory; Conformal field theory; N-extended tensorial superspaces; Superfield theory  
  Abstract We propose superfield equations in tensorial N-extended superspaces to describe the N = 2,4,8 supersymmetric generalizations of free conformal higher spin theories. These can be obtained by quantizing a superparticle model in N-extended tensorial superspace. The N-extended higher spin supermultiplets just contain scalar and 'spinor' fields in tensorial space so that, in contrast with the standard (super)space approach, no nontrivial generalizations of the Maxwell or Einstein equations to tensorial space appear when N > 2. For N = 4,8, the higher spin-tensorial components of the extended tensorial superfields are expressed through additional scalar and spinor fields in tensorial space which obey the same free higher spin equations, but that are axion-like in the sense that they possess Peccei-Quinn-like symmetries.  
  Address [de Azcarraga, JA] CSIC UVEG, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: azcarrag@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295955100008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 781  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva