toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de los Rios, M.; Petac, M.; Zaldivar, B.; Bonaventura, N.R.; Calore, F.; Iocco, F. url  doi
openurl 
  Title Determining the dark matter distribution in simulated galaxies with deep learning Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 525 Issue 4 Pages (down) 6015-6035  
  Keywords methods: data analysis; software: simulations; galaxies: general; galaxies: haloes; dark matter  
  Abstract We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass similar to 10(11)-10(13)M(circle dot) from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below approximate to 0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations.  
  Address [de los Rios, Martin] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil, Email: fabio.iocco.astro@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001072112100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5707  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 4 Pages (down) 5614-5628  
  Keywords acceleration of particles; neutrinos; transients: gamma-ray bursts; astroparticle physics  
  Abstract Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p gamma interactions. In this work, ANTARFS data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 percent.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: silvia.celli@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606297700092 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4677  
Permanent link to this record
 

 
Author Moline, A.; Sanchez-Conde, M.A.; Palomares-Ruiz, S.; Prada, F. url  doi
openurl 
  Title Characterization of subhalo structural properties and implications for dark matter annihilation signals Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 466 Issue 4 Pages (down) 4974-4990  
  Keywords galaxies: haloes; cosmology: theory; dark matter  
  Abstract A prediction of the standard Lambda cold dark matter cosmology is that dark matter (DM) haloes are teeming with numerous self-bound substructure or subhaloes. The precise properties of these subhaloes represent important probes of the underlying cosmological model. We use data from Via Lactea II and Exploring the Local Volume in Simulations N-body simulations to learn about the structure of subhaloes with masses 10(6)-10(11) h(-1) M circle dot. Thanks to a superb subhalo statistics, we study subhalo properties as a function of distance to host halo centre and subhalo mass, and provide a set of fits that accurately describe the subhalo structure. We also investigate the role of subhaloes on the search for DM annihilation. Previous work has shown that subhaloes are expected to boost the DM signal of their host haloes significantly. Yet, these works traditionally assumed that subhaloes exhibit similar structural properties than those of field haloes, while it is known that subhaloes are more concentrated. Building upon our N-body data analysis, we refine the substructure boost model of Sanchez-Conde & Prada (2014), and find boosts that are a factor 2-3 higher. We further refine the model to include unavoidable tidal stripping effects on the subhalo population. For field haloes, this introduces a moderate (similar to 20-30 per cent) suppression. Yet, for subhaloes like those hosting dwarf galaxy satellites, tidal stripping plays a critical role, the boost being at the level of a few tens of percent at most. We provide a parametrization of the boost for field haloes that can be safely applied over a wide halo mass range.  
  Address [Moline, Angeles] Univ Tecn Lisboa, CFTP, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: angeles.moline@gmail.com;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402849400088 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3164  
Permanent link to this record
 

 
Author ANTARES and HESS Collaborations (Petroff, E. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A polarized fast radio burst at low Galactic latitude Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 469 Issue 4 Pages (down) 4465-4482  
  Keywords polarization; methods: data analysis; surveys; ISM: structure  
  Abstract We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.  
  Address [Petroff, E.; Rowlinson, A.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406837900051 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3241  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A. url  doi
openurl 
  Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 431 Issue 4 Pages (down) 3670-3677  
  Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe  
  Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.  
  Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319479000057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva