toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rinaldi, M.; Vento, V. url  doi
openurl 
  Title Scalar spectrum in a graviton soft wall model Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 12 Pages (down) 125003 - 16pp  
  Keywords glueball; meson; spectrum; AdS; CFT  
  Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.  
  Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584306700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4587  
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V. url  doi
openurl 
  Title Heavy quark potential from QCD-related effective coupling Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 12 Pages (down) 125002 - 12pp  
  Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia  
  Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.  
  Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388219700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2870  
Permanent link to this record
 

 
Author Deppisch, F.F.; Hirsch, M.; Pas, H. url  doi
openurl 
  Title Neutrinoless double-beta decay and physics beyond the standard model Type Journal Article
  Year 2012 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 39 Issue 12 Pages (down) 124007 - 23pp  
  Keywords  
  Abstract Neutrinoless double-beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double-beta decay and neutrino mass, review a general Lorentz-invariant parametrization of the double-beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double-beta decay and, finally, discuss possibilities of discriminating and testing these models and mechanisms in complementary experiments.  
  Address [Deppisch, Frank F.] UCL, Dept Phys & Astron, London, England, Email: f.deppisch@ucl.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315520400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1347  
Permanent link to this record
 

 
Author PANDA Collaboration (Davi, F. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the endcap disc DIRC Type Journal Article
  Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 49 Issue 12 Pages (down) 120501 - 128pp  
  Keywords technical design report; particle identification; Cherenkov detector; PANDA  
  Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.  
  Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928188400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5476  
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L. url  doi
openurl 
  Title Electron scattering and neutrino physics Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 12 Pages (down) 120501 - 34pp  
  Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering  
  Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.  
  Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001086874300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5748  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva