toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rinaldi, M. url  doi
openurl 
  Title GPDs at non-zero skewness in ADS/QCD model Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 771 Issue Pages (down) 563-567  
  Keywords Phenomenological models; Deep inelastic scattering (phenomenology)  
  Abstract We study Generalized Parton Distribution functions (GPDs) usually measured in hard exclusive processes and encoding information on the three dimensional partonic structure of hadrons and their spin decomposition, for non-zeroskewness within the AdS/QCD formalism. To this aim the canonical scheme to calculate GPDs at zero skewness has been properly generalized. Furthermore, we show that the latter quantities, in this non-forwardregime, are sensitive to non-trivialdetails of the hadronic light front wave function, such as a kind of parton correlations usually not accessible in studies of form factors and GPDs at zero skewness.  
  Address [Rinaldi, Matteo] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mrinaldi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406183300084 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3262  
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V. doi  openurl
  Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
  Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.  
  Volume 53 Issue 6 Pages (down) 161 - 8pp  
  Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics  
  Abstract We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.  
  Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001087936700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5766  
Permanent link to this record
 

 
Author Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R. url  doi
openurl 
  Title Neutrino structure functions from GeV to EeV energies Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (down) 149 - 78pp  
  Keywords Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions  
  Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.  
  Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992767300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5559  
Permanent link to this record
 

 
Author Noguera, S.; Scopetta, S. url  doi
openurl 
  Title Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages (down) 102 - 18pp  
  Keywords Deep Inelastic Scattering; Phenomenological Models; Chiral Lagrangians  
  Abstract An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny.  
  Address [Noguera, Santiago] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: santiago.noguera@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365095700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2456  
Permanent link to this record
 

 
Author Deak, M.; Kutak, K. url  doi
openurl 
  Title Kinematical constraint effects in the evolution equations based on angular ordering Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (down) 068 - 13pp  
  Keywords QCD Phenomenology; Deep Inelastic Scattering (Phenomenology)  
  Abstract We study effects of imposing various forms of the kinematical constraint on the full form of the CCFM equation and its non-linear extension. We find, that imposing the constraint in its complete form modifies significantly the shape of gluon density as compared to forms of the constraint used in numerical calculations and phenomenological applications. In particular the resulting gluon density is suppressed for large values of the hard scale related parameter and k(T) of gluon. This result might be important in description of jet correlations at Large Hadron Collider within the CCFM approach.  
  Address [Deak, Michal] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: michal.deak@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356951500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2290  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva