toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bas i Beneito, A.; Gargalionis, J.; Herrero-Garcia, J.; Santamaria, A.; Schmidt, M.A. url  doi
openurl 
  Title An EFT approach to baryon number violation: lower limits on the new physics scale and correlations between nucleon decay modes Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages (up) 004 - 37pp  
  Keywords Baryon/Lepton Number Violation; SMEFT; Specific BSM Phenomenology  
  Abstract Baryon number is an accidental symmetry of the Standard Model at the Lagrangian level. Its violation is arguably one of the most compelling phenomena predicted by physics beyond the Standard Model. Furthermore, there is a large experimental effort to search for it including the Hyper-K, DUNE, JUNO, and THEIA experiments. Therefore, an agnostic, model-independent, analysis of baryon number violation using the power of Effective Field Theory is very timely. In particular, in this work we study the contribution of dimension six and seven effective operators to |triangle(B – L)| = 0, 2 nucleon decays taking into account the effects of Renormalisation Group Evolution. We obtain lower limits on the energy scale of each operator and study the correlations between different decay modes. We find that for some operators the effect of running is very significant.  
  Address [Bas i Beneito, Arnau; Gargalionis, John; Herrero-Garcia, Juan; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: arnau.bas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001262559200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6181  
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L. url  doi
openurl 
  Title The dark side of curvature Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages (up) 008 - 17pp  
  Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR  
  Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000026 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 465  
Permanent link to this record
 

 
Author Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Melchiorri, A. url  doi
openurl 
  Title 2021-H-0 odyssey: closed, phantom and interacting dark energy cosmologies Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages (up) 008 - 21pp  
  Keywords baryon acoustic oscillations; cosmological parameters from CMBR; cosmological perturbation theory; dark energy theory  
  Abstract Up-to-date cosmological data analyses have shown that (sigma) a closed universe is preferred by the Planck data at more than 99% CL, and (b) interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the H-0 problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000711524000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5012  
Permanent link to this record
 

 
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultraviolet extensions of the Scotogenic model Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 023 - 35pp  
  Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter  
  Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.  
  Address [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044764300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5614  
Permanent link to this record
 

 
Author Racker, J. url  doi
openurl 
  Title Mass bounds for baryogenesis from particle decays and the inert doublet model Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages (up) 025 - 23pp  
  Keywords leptogenesis; baryon asymmetry  
  Abstract In models for thermal baryogenesis from particle decays, the mass of the decaying particle is typically many orders of magnitude above the TeV scale. We will discuss different ways to lower the energy scale of baryogenesis and present the corresponding lower bounds on the particle's mass. This is done specifically for the inert doublet model with heavy Majorana neutrinos and then we indicate how to extrapolate the results to other scenarios. We also revisit the question of whether or not dark matter, neutrino masses, and the cosmic baryon asymmetry can be explained simultaneously at low energies in the inert doublet model.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: racker@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333667900025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1744  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva