toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mendoza, E.; Alcayne, V.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A.P.; Sanchez-Caballero, A.; Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Calvino, F.; Guerrero, C. doi  openurl
  Title Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1047 Issue Pages (down) 167894 - 16pp  
  Keywords Neutron capture; Total energy detector; Pulse height weighting technique; 7-ray cascades  
  Abstract Neutron capture cross section measurements in time-of-flight facilities are usually performed by detecting the prompt 7-rays emitted in the capture reactions. One of the difficulties to be addressed in these measurements is that the emitted 7-rays may change with the neutron energy, and therefore also the detection efficiency. To deal with this situation, many measurements use the so called Total Energy Detection (TED) technique, usually in combination with the Pulse Height Weighting Technique (PHWT). With it, it is sought that the detection efficiency depends only on the total energy of the 7-ray cascade, which does not vary much with the neutron energy. This technique was developed in the 1960s and has been used in many neutron capture experiments to date. One of the requirements of the technique is that 7-ray detectors have a low efficiency. This has meant that the PHWT has been used with experimental setups with low detection efficiencies. However, this condition does not have to be fulfilled by the experimental system as a whole. The main goal of this work is to show that it is possible to measure with a high efficiency detection system that uses the PHWT, and how to analyze the measured data.  
  Address [Mendoza, E.; Alcayne, V; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Perez de Rada, A.; Sanchez-Caballero, A.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000908431800002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5468  
Permanent link to this record
 

 
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V.; Ladarescu, I.; Redondo, M.L.; Tain, J.L.; Tolosa, A.; Domingo-Pardo, C.; Calvino, F.; Casanovas, A.; Tarifeño-Saldivia, A.; Alcayne, V.; Cano-Ott, D.; Martinez, T.; Guerrero, C.; Barbagallo, M.; Macina, D.; Bacak, M. doi  openurl
  Title A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 985 Issue Pages (down) 164709 - 8pp  
  Keywords Silicon photomultiplier; Radiation detectors; Time-of-flight; Radiative capture; Total energy detector; Pulse-height weighting technique  
  Abstract Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.  
  Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V; Ladarescu, I; Redondo, M. Lopez; Tain, J. L.; Tolosa, A.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: dacaldia@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000592358200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4638  
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A. doi  openurl
  Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
  Year 2023 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 146 Issue Pages (down) 102793 - 9pp  
  Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination  
  Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.  
  Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928281600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5482  
Permanent link to this record
 

 
Author Modamio, V.; Jungclaus, A.; Algora, A.; Bazzacco, D.; Escrig, D.; Fraile, L.M.; Lenzi, S.; Marginean, N.; Martinez, T.; Napoli, D.R.; Schwengner, R.; Ur, C.A. doi  openurl
  Title New high-spin isomer and quasiparticle-vibration coupling in Ir-187 Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 81 Issue 5 Pages (down) 054304 - 13pp  
  Keywords  
  Abstract The high-spin structure of the Z = 77 nucleus Ir-187 has been studied using the fusion-evaporation reaction W-186(Li-7, (6)n) at a beam energy of 59 MeV. The excitation scheme of this nucleus has been extended by more than 110 new states, including extensions of all previously established rotational bands. The band crossing region of the h(9/2) negative-parity yrast band has been revised and new intrinsic high-K states have been identified. In particular, a 29/2(-) isomeric state [T-1/2 = 1.8(5)mu s] at an excitation energy of 2487 keV has been observed for the first time, and on top of it, a rich level scheme reaching up to spin (59/2(-)) and excitation energies around 7 MeV has been established.  
  Address [Modamio, V.; Jungclaus, A.; Escrig, D.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: andrea.jungclaus@iem.cfmac.csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278144800015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 441  
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D. doi  openurl
  Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages (down) C05012 - 12pp  
  Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)  
  Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.  
  Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305419700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1084  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva