toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R. url  doi
openurl 
  Title From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality Type Journal Article
  Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 12 Pages (down) 2571 - 14pp  
  Keywords perturbative QFT; higher-order calculations; multiloop Feynman integrals  
  Abstract Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.  
  Address [Ramirez-Uribe, Selomit; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Parc Cient, E-46980 Paterna, Spain, Email: roger@uas.edu.mx  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000904374000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5450  
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Particle Creation and the Schwinger Model Type Journal Article
  Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 11 Pages (down) 2435 - 9pp  
  Keywords Schwinger model; semiclassical theory; particle creation  
  Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.  
  Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000895122100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5432  
Permanent link to this record
 

 
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages (down) 2108 - 24pp  
  Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields  
  Abstract The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.  
  Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000726717400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5040  
Permanent link to this record
 

 
Author Aldana, M.; Lledo, M.A. url  doi
openurl 
  Title The Fuzzy Bit Type Journal Article
  Year 2023 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 12 Pages (down) 2103 - 25pp  
  Keywords fuzzy sets; quantum logic; multivalued logic; Quantum Mechanics  
  Abstract In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the Birkhoff-von Neumann logic, the lattice of projectors of a Hilbert space. Three cases are considered: the qubit, two qubits entangled, and a qutrit 'nested' inside the two entangled qubits. The membership functions of the fuzzy sets are explicitly computed and all the connectives of the fuzzy sets are interpreted as operations with these particular membership functions. In this way, a complete picture of the standard quantum logic in terms of fuzzy sets is obtained for the systems considered.  
  Address [Aldana, Milagrosa] Univ Simon Bolivar, Dept Ciencias Tierra, Valle De Sartenejas 89000, Baruta, Venezuela, Email: maldana@usb.ve;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131238400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5962  
Permanent link to this record
 

 
Author Van Isacker, P.; Algora, A.; Vitéz-Sveiczer, A.; Kiss, G.G.; Orrigo, S.E.A.; Rubio, B.; Aguilera, P. doi  openurl
  Title Gamow-Teller Beta Decay and Pseudo-SU(4) Symmetry Type Journal Article
  Year 2023 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 11 Pages (down) 2001 - 15pp  
  Keywords Gamow-Teller beta decay; pseudo-SU(4) symmetry; odd-odd N = Z nuclei  
  Abstract We report on recent experimental results on beta decay into self-conjugate ( N = Z) nuclei with mass number 58 <= A <= 70. Super-allowed b decays from the J(pi) = 0(+) ground state of a Z = N + 2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to J(pi) = 1(+) states by way of Gamow-Teller (GT) transitions. The operator of the latter decay is a generator of Wigner's SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spinorbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin-orbit splitting can be small in nuclei with 58 <= A <= 70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT beta decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A = 70.  
  Address [Van Isacker, Piet] CEA, DRF, Grand Accelerateur Natl Ions Lourds GANIL, CNRS,IN2P3, Blvd Henri Becquerel, F-14076 Caen, France, Email: isacker@ganil.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114520800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5843  
Permanent link to this record
 

 
Author Feijoo, A.; Gazda, D.; Magas, V.; Ramos, A. url  doi
openurl 
  Title The (K)over-barN Interaction in Higher Partial Waves Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 8 Pages (down) 1434 - 22pp  
  Keywords chiral Lagrangian; unitarization; resonances; (K)over-barN interaction  
  Abstract We present a chiral (K) over barN interaction model that has been developed and optimized in order to account for the experimental data of inelastic (K) over barN reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves.  
  Address [Feijoo, Albert] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartados 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000689831200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4948  
Permanent link to this record
 

 
Author Bernabeu, J. url  doi
openurl 
  Title Symmetries and Their Breaking in the Fundamental Laws of Physics Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 8 Pages (down) 1316 - 27pp  
  Keywords flavour families; colour charges; gauge symmetries; chirality; discrete symmetries; neutrinos; spontaneous breaking  
  Abstract Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) x U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark-Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter-antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout-Englert-Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564717500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4523  
Permanent link to this record
 

 
Author Fioresi, R.; Lledo, M.A. url  doi
openurl 
  Title Quantum Supertwistors Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 7 Pages (down) 1241 - 16pp  
  Keywords star products; superspace; non-commutative spacetime; quantum groups; quantum supergroups  
  Abstract In this paper, we give an explicit expression for a star product on the super-Minkowski space written in the supertwistor formalism. The big cell of the super-Grassmannian Gr(2|0,4|1) is identified with the chiral, super-Minkowski space. The super-Grassmannian is a homogeneous space under the action of the complexification SL(4|1) of SU(2,2|1), the superconformal group in dimension 4, signature (1,3), and supersymmetry N=1. The quantization is done by substituting the groups and homogeneous spaces by their quantum deformed counterparts. The calculations are done in Manin's formalism. When we restrict to the big cell, we can explicitly compute an expression for the super-star product in the Minkowski superspace associated to this deformation and the choice of a certain basis of monomials.  
  Address [Fioresi, Rita] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy, Email: fioresi@dm.unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000677165600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4909  
Permanent link to this record
 

 
Author Bernabeu, J.; Navarro-Salas, J. url  doi
openurl 
  Title A Non-Local Action for Electrodynamics: Duality Symmetry and the Aharonov-Bohm Effect, Revisited Type Journal Article
  Year 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 11 Issue 10 Pages (down) 1191 - 13pp  
  Keywords non-local action; electrodynamics; electromagnetic duality symmetry; Aharonov-Bohm effect  
  Abstract A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov-Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.  
  Address [Bernabeu, Joan] Ludwig Maximilians Univ Munchen, Phys Dept, Theresienstr 37, D-80333 Munich, Germany, Email: Joan.Bernabeu@physik.uni-muenchen.de;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000495457600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4192  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F. url  doi
openurl 
  Title A Stroll through the Loop-Tree Duality Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 6 Pages (down) 1029 - 37pp  
  Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders  
  Abstract The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.  
  Address [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000666742200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4889  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva