toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bai, Y.; Lu, R.; Lu, S.D.; Salvado, J.; Stefanek, B.A. url  doi
openurl 
  Title Three twin neutrinos: Evidence from LSND and MiniBooNE Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 7 Pages (down) 073004 - 11pp  
  Keywords  
  Abstract We construct a neutrino model of three twin neutrinos in light of the neutrino appearance excesses at LSND and MiniBooNE. The model, which includes a twin parity, naturally predicts identical lepton Yukawa structures in the Standard Model and the twin sectors. As a result, a universal mixing angle controls all three twin neutrino couplings to the Standard Model charged leptons. This mixing angle is predicted to be the ratio of the electroweak scale over the composite scale of the Higgs boson and has the right order of magnitude to fit the data. The heavy twin neutrinos decay within the experimental lengths into active neutrinos plus a long-lived Majoron and can provide a good fit, at around the 4 sigma confidence level, to the LSND and MiniBooNE appearance data while simultaneously satisfying the disappearance constraints. For the Majorana neutrino case, the fact that neutrinos have a larger scattering cross section than antineutrinos provides a natural explanation to MiniBooNE's observation of a larger antineutrino appearance excess.  
  Address [Bai, Yang; Lu, Ran; Lu, Sida; Stefanek, Ben A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373581900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2616  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Opferkuch, T.; Stefanek, B. url  doi
openurl 
  Title Lattice simulations of non-minimally coupled scalar fields in the Jordan frame Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 3 Pages (down) 077 - 28pp  
  Keywords  
  Abstract The presence of scalar fields with non-minimal gravitational interactions of the form & xi;|& phi;|2R may have important implications for the physics of the early universe. We propose a procedure to solve the dynamics of non-minimally coupled scalar fields directly in the Jordan frame, where the non-minimal couplings are maintained explicitly. Our algorithm can be applied to lattice simulations that include minimally coupled fields and an arbitrary number of non-minimally coupled scalars, with the expansion of the universe sourced by all fields present. This includes situations when the dynamics become fully inhomogeneous, fully non-linear (due to e.g. backreaction or mode rescattering effects), and/or when the expansion of the universe is dominated by non-minimally coupled species. As an example, we study geometric preheating with a non-minimally coupled scalar spectator field when the inflaton oscillates following the end of inflation.  
  Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001065573600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5670  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva