toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Drewes, M.; Garbrecht, B.; Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N.; Salvado, J.; Teresi, D. url  doi
openurl 
  Title ARS leptogenesis Type Journal Article
  Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 5-6 Pages (down) 1842002 - 46pp  
  Keywords  
  Abstract We review the current status of the leptogenesis scenario originally proposed by Akhmedov, Rubakov and Smirnov (ARS). It takes place in the parametric regime where the right-handed neutrinos are at the electroweak scale or below and the CP-violating effects are induced by the coherent superposition of different right-handed mass eigenstates. Two main theoretical approaches to derive quantum kinetic equations, the Hamiltonian time evolution as well as the Closed-Time-Path technique are presented, and we discuss their relations. For scenarios with two right-handed neutrinos, we chart the viable parameter space. Both, a Bayesian analysis, that determines the most likely configurations for viable leptogenesis given different variants of flat priors, and a determination of the maximally allowed mixing between the light, mostly left-handed, and heavy, mostly right-handed, neutrino states are discussed. Rephasing invariants are shown to be a useful tool to classify and to understand various distinct contributions to ARS leptogenesis that can dominate in different parametric regimes. While these analyses are carried out for the parametric regime where initial asymmetries are generated predominantly from lepton-number conserving, but flavor violating effects, we also review the contributions from lepton-number violating operators and identify the regions of parameter space where these are relevant.  
  Address [Drewes, M.; Garbrecht, B.] Tech Univ Munich, Phys Dept, James Franck Str, D-85748 Garching, Germany, Email: m.pilar.hernandez@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426586100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3508  
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J. url  doi
openurl 
  Title Low-scale seesaw models versus N-eff Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 7 Pages (down) 073009 - 7pp  
  Keywords  
  Abstract We consider the contribution of the extra sterile states in generic low-scale seesaw models to extra radiation, parametrized by N-eff. We find that the value of Neff is roughly independent of the seesaw scale within a wide range. We explore the full parameter space in the case of two extra sterile states and find that these models are strongly constrained by cosmological data for any value of the seesaw scale below O(100 MeV).  
  Address [Hernandez, P.; Kekic, M.] IFIC CSIC UVEG, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334317200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1754  
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J. url  doi
openurl 
  Title N_eff in low-scale seesaw models versus the lightest neutrino mass Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 6 Pages (down) 065033 - 12pp  
  Keywords  
  Abstract We evaluate the contribution to N_eff of the extra sterile states in low-scale type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalization in the early Universe, while the third one might not thermalize provided the lightest neutrino mass is below O(10(-3) eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1 eV-100 MeV. The implications for neutrinoless double beta decay are also discussed.  
  Address [Hernandez, P.; Kekic, M.] Univ Valencia, IFIC CSIC, E-46071 Valencia, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344108100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2001  
Permanent link to this record
 

 
Author Abdullahi, A.M. et al; Lopez-Pavon, J. url  doi
openurl 
  Title The present and future status of heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 2 Pages (down) 020501 - 100pp  
  Keywords Neutrinos; beyond the standard model; sterile neutrinos  
  Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.  
  Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000918351600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5486  
Permanent link to this record
 

 
Author Linster, M.; Lopez-Pavon, J.; Ziegler, R. url  doi
openurl 
  Title Neutrino observables from a U(2) flavor symmetry Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 1 Pages (down) 015020 - 9pp  
  Keywords  
  Abstract We study the predictions for CP phases and absolute neutrino mass scale for broad classes of models with a U(2)-like flavor symmetry. For this purpose we consider the same special textures in neutrino and charged lepton mass matrices that are successful in the quark sector. While in the neutrino sector the U(2) structure enforces two texture zeros, the contribution of the charged lepton sector to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix can be parametrized by two rotation angles. Restricting to the cases where at least one of these angles is small, we obtain three representative scenarios. In all scenarios we obtain a narrow prediction for the sum of neutrino masses in the range of 60-75 meV, possibly in the reach of upcoming galaxy survey experiments. All scenarios can be excluded if near-future experimental date provide evidence for either neutrinoless double-beta decay or inverted neutrino mass ordering.  
  Address [Linster, Matthias; Ziegler, Robert] Karlsruhe Inst Technol, Inst Theoret Teilchenphys, D-76131 Karlsruhe, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609014300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4689  
Permanent link to this record
 

 
Author Drewes, M.; Klaric, J.; Lopez-Pavon, J. url  doi
openurl 
  Title New benchmark models for heavy neutral lepton searches Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 12 Pages (down) 1176 - 11pp  
  Keywords  
  Abstract The sensitivity of direct searches for heavy neutral leptons (HNLs) in accelerator-based experiments depends strongly on the particles properties. Commonly used benchmark scenarios are important to ensure comparability and consistency between experimental searches, re-interpretations, and sensitivity studies for different facilities. In models where the HNLs are primarily produced and decay through the weak interaction, benchmarks are in particular defined by fixing the relative strengths of their mixing with SM neutrinos of different flavours, and the interpretation of experimental data is known to strongly depend on those ratios. The commonly used benchmarks in which a single HNL flavour exclusively interacts with one Standard Model generation do not reflect what is found in realistic neutrino mass models. We identify two additional benchmarks for accelerator-based direct HNL searches, which we primarily select based on the requirement to provide a better approximation for the phenomenology of realistic neutrino mass models in view of present and future neutrino oscillation data.  
  Address [Drewes, M.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000906204200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5446  
Permanent link to this record
 

 
Author Antel, C. et al; Lopez-Pavon, J.; Sandner, S.; Urrea, S. url  doi
openurl 
  Title Feebly-interacting particles: FIPs 2022 Workshop Report Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 12 Pages (down) 1122 - 266pp  
  Keywords  
  Abstract Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.  
  Address [Antel, C.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland, Email: MGiannotti@barry.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001127234200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5908  
Permanent link to this record
 

 
Author Agrawal, P. et al; Hernandez, P.; Lopez-Pavon, J. url  doi
openurl 
  Title Feebly-interacting particles: FIPs 2020 workshop report Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages (down) 1015 - 137pp  
  Keywords  
  Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.  
  Address [Agrawal, P.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England, Email: gaia.lanfranchi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000720658000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5043  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Lopez-Pavon, J.; No, J.M.; Ota, T.; Rosauro-Alcaraz, S. url  doi
openurl 
  Title nu Electroweak baryogenesis: the scalar singlet strikes back Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages (down) 715 - 23pp  
  Keywords  
  Abstract We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.  
  Address [Fernandez-Martinez, E.; No, J. M.; Ota, T.] Univ Autonoma Madrid, CSIC, Dept Fis Teor, IFT UAM, Madrid 28049, Spain, Email: rosauro@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5609  
Permanent link to this record
 

 
Author Esteban, I.; Lopez-Pavon, J.; Martinez-Soler, I.; Salvado, J. url  doi
openurl 
  Title Looking at the axionic dark sector with ANITA Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 3 Pages (down) 259 - 9pp  
  Keywords  
  Abstract The ANITA experiment has recently observed two anomalous events emerging from well below the horizon. Even though they are consistent with tau cascades, a high-energy Standard Model or Beyond the Standard Model explanation is challenging and in tension with other experiments. We study under which conditions the reflection of generic radio pulses can reproduce these signals. Furthermore, we propose that these pulses can be resonantly produced in the ionosphere via axion-photon conversion. This naturally explains the direction and polarization of the events and avoids other experimental bounds.  
  Address [Esteban, I; Salvado, J.] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 647, E-08028 Barcelona, Spain, Email: ivan.esteban@fqa.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521957300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4345  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva