|   | 
Details
   web
Records
Author Bruce, R. et al; Lari, L.
Title Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider Type Journal Article
Year 2014 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams
Volume 17 Issue 8 Pages (down) 081004 - 16pp
Keywords
Abstract The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.
Address [Bruce, R.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.] CERN, CH-1211 Geneva, Switzerland, Email: roderik.bruce@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-4402 ISBN Medium
Area Expedition Conference
Notes WOS:000341259800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1905
Permanent link to this record
 

 
Author Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F.J.P.; Cervera-Villanueva, A.; Ghosh, T.; Gomez-Cadenas, J.J.; Hernandez, P.; Martin-Albo, J.; Burguet-Castell, J.
Title Toroidal magnetized iron neutrino detector for a neutrino factory Type Journal Article
Year 2013 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams
Volume 16 Issue 8 Pages (down) 081002 - 16pp
Keywords
Abstract A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large theta(13). The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent delta(CP) reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of delta(CP).
Address [Bross, A.; Wands, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: paul.soler@glasgow.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-4402 ISBN Medium
Area Expedition Conference
Notes WOS:000323389400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1559
Permanent link to this record
 

 
Author Belver-Aguilar, C.; Faus-Golfe, A.; Toral, F.; Barnes, M.J.
Title Stripline design for the extraction kicker of Compact Linear Collider damping rings Type Journal Article
Year 2014 Publication Physical Review Special Topics-Accelerators And Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams
Volume 17 Issue 7 Pages (down) 071003 - 14pp
Keywords
Abstract In the framework of the design study of future linear colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal center-of-mass energy of 3 TeV. To achieve the luminosity requirements, predamping rings ( PDRs) and damping rings ( DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several kicker systems are needed to inject and extract the beam from the PDRs and DRs. In order to achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. In this paper, we present the complete design of the striplines for the DR extraction kicker, since it is the most challenging from the field homogeneity point of view. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most common shapes introduce separately. Furthermore, a detailed study of the different operating modes of a stripline kicker allowed the beam coupling impedance to be reduced at low frequencies: this cannot be achieved by tapering the electrodes. The optimum design of the striplines and their components has been based on studies of impedance matching, field homogeneity, power transmission, beam coupling impedance, and manufacturing tolerances. Finally, new ideas for further improvement of the performance of future striplines are reported.
Address [Belver-Aguilar, C.; Faus-Golfe, A.] Inst Fis Corpuscular, Paterna 46980, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-4402 ISBN Medium
Area Expedition Conference
Notes WOS:000341249400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1898
Permanent link to this record
 

 
Author Andrews, H.L.; Taheri, F.B.; Barros, J.; Bartolini, R.; Bharadwaj, V.; Clarke, C.; Delerue, N.; Doucas, G.; Fuster-Martinez, N.; Vieille-Grosjean, M.; Konoplev, I.V.; Labat, M.; Le Corre, S.; Perry, C.; Reichold, A.; Stevenson, S.
Title Reconstruction of the time profile of 20.35 GeV, subpicosecond long electron bunches by means of coherent Smith-Purcell radiation Type Journal Article
Year 2014 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams
Volume 17 Issue 5 Pages (down) 052802 - 13pp
Keywords
Abstract We have used coherent Smith-Purcell radiation (cSPr) in order to determine the temporal profile of sub-ps long electron bunches at the Facility for Advanced Accelerator Experimental Tests, at SLAC. The measurements reported here were carried out in June 2012 and April 2013. The rms values for the bunch length varied between 356 to 604 fs, depending on the accelerator settings. The resolution of the system was limited by the range of detectable wavelengths which was, in turn, determined by the choice of the grating periods used in these experiments and the achievable beam-grating separation. The paper gives the details of the various steps in the reconstruction of the time profile and discusses possible improvements to the resolution. We also present initial measurements of the polarization properties of cSPr and of the background radiation.
Address [Andrews, H. L.] LANL, Los Alamos, NM 87545 USA, Email: g.doucas@physics.ox.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-4402 ISBN Medium
Area Expedition Conference
Notes WOS:000336654500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1808
Permanent link to this record
 

 
Author ATF Collaboration (Bambade, P. e al); Alabau Pons, M.; Faus-Golfe, A.
Title Present status and first results of the final focus beam line at the KEK Accelerator Test Facility Type Journal Article
Year 2010 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams
Volume 13 Issue 4 Pages (down) 042801 - 10pp
Keywords
Abstract ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U. S. scientists. The present status and first results are described.
Address [Bambade, P.; Renier, Y.; Rimbault, C.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-4402 ISBN Medium
Area Expedition Conference
Notes ISI:000278150700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 436
Permanent link to this record