|   | 
Details
   web
Records
Author Karan, A.; Sadhukhan, S.; Valle, J.W.F.
Title Phenomenological profile of scotogenic fermionic dark matter Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (down) 185 - 34pp
Keywords Particle Nature of Dark Matter; Models for Dark Matter; Neutrino Interactions
Abstract We consider the possibility that neutrino masses arise from the exchange of dark matter states. We examine in detail the phenomenology of fermionic dark matter in the singlet-triplet scotogenic model. We explore the case of singlet-like fermionic dark matter, taking into account all coannihilation effects relevant for determining its relic abundance, such as fermion-fermion and scalar-fermion coannihilation. Although this in principle allows for dark matter below 60 GeV, the latter is in conflict with charged lepton flavour violation (cLFV) and/or collider physics constraints. We examine the prospects for direct dark matter detection in upcoming experiments up to 10 TeV. Fermion-scalar coannihilation is needed to obtain viable fermionic dark matter in the 60-100 GeV mass range. Fermion-fermion and fermion-scalar coannihilation play complementary roles in different parameter regions above 100 GeV.
Address [Karan, Anirban; Sadhukhan, Soumya; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: kanirban@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001135721300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5904
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Diaz-Morcillo, A.; Gimeno, B.
Title Enhancing resonant circular-section haloscopes for dark matter axion detection: approaches and limitations in volume expansion Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (down) 159 - 30pp
Keywords Axions and ALPs; Particle Nature of Dark Matter
Abstract Haloscopes, microwave resonant cavities utilized in detecting dark matter axions within powerful static magnetic fields, are pivotal in modern astrophysical research. This paper delves into the realm of cylindrical geometries, investigating techniques to augment volume and enhance compatibility with dipole or solenoid magnets. The study explores volume constraints in two categories of haloscope designs: those reliant on single cavities and those employing multicavities. In both categories, strategies to increase the expanse of elongated structures are elucidated. For multicavities, the optimization of space within magnets is explored through 1D configurations. Three subcavity stacking approaches are investigated, while the foray into 2D and 3D geometries lays the groundwork for future topological developments. The results underscore the efficacy of these methods, revealing substantial room for progress in cylindrical haloscope design. Notably, an elongated single cavity design attains a three-order magnitude increase in volume compared to a WC-109 standard waveguide-based single cavity. Diverse prototypes featuring single cavities, 1D, 2D, and 3D multicavities highlight the feasibility of leveraging these geometries to magnify the volume of tangible haloscope implementations.
Address [Garcia-Barcelo, J. M.] Werner Heisenberg Inst, Max Planck Inst Phys, Fohringer Ring 6, D-80805 Munich, Germany, Email: jmgarcia@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001111979900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5870
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (down) 119 - 48pp
Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology
Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001165531600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5956
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Melcon, A.A.; Diaz-Morcillo, A.; Gimeno, B.; Lozano-Guerrero, A.J.; Monzi-Cabrera, J.; Navarro-Madrid, J.R.; Navarro, P.
Title Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (down) 098 - 37pp
Keywords Axions and ALPs; Particle Nature of Dark Matter
Abstract Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.
Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Monzo-Cabrera, J.; Navarro-Madrid, J. R.; Navarro, P.] Univ Politecn Cartagena, Dept Tecnol Informac & Comun, Pl Hosp 1, Cartagena 30302, Spain, Email: josemaria.garcia@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001050076700002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5611
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A.
Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (down) 085 - 36pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation
Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000836782300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5340
Permanent link to this record