|   | 
Details
   web
Records
Author De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Marinelli, A.
Title Prospects for detection of a galactic diffuse neutrino flux Type Journal Article
Year 2022 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.
Volume 9 Issue Pages (down) 1041838 - 9pp
Keywords galactic cosmic rays; cosmic-ray transport; diffuse gamma rays; high energy gamma rays; diffuse neutrinos; galactic plane
Abstract A Galactic cosmic-ray transport model featuring non-homogeneous transport has been developed over the latest years. This setup is aimed at reproducing gamma-ray observations in different regions of the Galaxy (with particular focus on the progressive hardening of the hadronic spectrum in the inner Galaxy) and was shown to be compatible with the very-high-energy gamma-ray diffuse emission recently detected up to PeV energies. In this work, we extend the results previously presented to test the reliability of that model throughout the whole sky. To this aim, we compare our predictions with detailed longitude and latitude profiles of the diffuse gamma-ray emission measured by Fermi-LAT for different energies and compute the expected Galactic nu diffuse emission, comparing it with current limits from the ANTARES collaboration. We emphasize that the possible detection of a Galactic nu component will allow us to break the degeneracy between our model and other scenarios featuring prominent contributions from unresolved sources and TeV halos.
Address [Luque, P. De La Torre] Stockholm Univ, Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-987x ISBN Medium
Area Expedition Conference
Notes WOS:000884672800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5407
Permanent link to this record
 

 
Author Alidra, M. et al; Torro Pastor, E.
Title The MATHUSLA test stand Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 985 Issue Pages (down) 164661 - 9pp
Keywords Long-lived particles; LHC; MATHUSLA; Backscattered cosmic rays
Abstract The rate of muons from LHC pp collisions reaching the surface above the ATLAS interaction point is measured as a function of the ATLAS luminosity and compared with expected rates from decays of W and Z bosons and b- and c-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 x 2.5 x 6.5 m(3) active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three (x, y)-measuring layers separated by 1.74 m from each other. Triggers selecting both upward-going tracks and downward-going tracks were used.
Address [Alidra, Maf; Ball, Austin; Guida, Roberto] CERN, Geneva, Switzerland, Email: Emma.Torro.Pastor@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000592358200022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4637
Permanent link to this record
 

 
Author Addazi, A. et al; Martinez-Mirave, P.; Mitsou, V.A.; Palomares-Ruiz, S.; Tortola, M.; Zornoza, J.D.
Title Quantum gravity phenomenology at the dawn of the multi-messenger era-A review Type Journal Article
Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 125 Issue Pages (down) 103948 - 119pp
Keywords Lorentz invariance violation and deformation; Gamma-ray astronomy; Cosmic neutrinos; Ultra-high-energy cosmic rays; Gravitational waves
Abstract The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
Address [Addazi, A.] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: jcarmona@unizar.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000830343400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5312
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 8 Pages (down) 627-639
Keywords Ultra-high energy cosmic rays; Large scale anisotropies; Pierre Auger Observatory
Abstract We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000288930200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 593
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS) Type Journal Article
Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 35 Issue 9 Pages (down) 591-607
Keywords Cosmic rays; Extensive air showers; Atmospheric monitoring; Atmospheric models
Abstract Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.
Address [Baeuml, J.; Bluemer, H.; Daumiller, K.; Engel, R.; Gonzalez, J. G.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Maurel, D.; Oehlschlaeger, J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Weindl, A.; Werner, F.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: bianca.keilhauer@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000302109200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 965
Permanent link to this record