|   | 
Details
   web
Records
Author Andricek, L.; Boronat, M.; Fuster, J.; Garcia, I.; Gomis, P.; Marinas, C.; Ninkovic, J.; Perello, M.; Villarejo, M.A.; Vos, M.
Title Integrated cooling channels in position-sensitive silicon detectors Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages (down) P06018 - 15pp
Keywords Particle tracking detectors; Particle tracking detectors (Solid-state detectors)
Abstract We present an approach to construct position-sensitive silicon detectors with an integrated cooling circuit. Tests on samples demonstrate that a very modest liquid flow very effectively cool the devices up to a power dissipation of over 10 W/cm(2). The liquid flow is found to have a negligible impact on the mechanical stability. A finite-element simulation predicts the cooling performance to an accuracy of approximately 10%.
Address [Andricek, L.; Ninkovic, J.] Max Plank Gesell, HalbLeiterLabor, Munich, Germany, Email: ignacio.garcia@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000379239700030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2760
Permanent link to this record
 

 
Author DEPFET collaboration (Alonso, O. et al); Boronat, M.; Esperante-Pereira, D.; Fuster, J.; Garcia, I.G.; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.
Title DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 2 Pages (down) 1457-1465
Keywords Active pixel sensor; DEPFET; linear collider; vertex detector
Abstract The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
Address [Alonso, O.; Casanova, R.; Dieguez, A.] Univ Barcelona, E-08028 Barcelona, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000320856800029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1489
Permanent link to this record
 

 
Author Amjad, M.S.; Bilokin, S.; Boronat, M.; Doublet, P.; Frisson, T.; Garcia Garcia, I.; Perello, M.; Poschl, R.; Richard, F.; Ros, E.; Rouene, J.; Ruiz-Femenia, P.; Vos, M.
Title A precise characterisation of the top quark electro-weak vertices at the ILC Type Journal Article
Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 75 Issue 10 Pages (down) 512 - 11pp
Keywords
Abstract Top quark production in the process e(+)e(-) -> t t at a future linear electron positron collider with polarised beams is a powerful tool to determine indirectly the scale of new physics. The presented study, based on a detailed simulation of the ILD detector concept, assumes a centre-of-mass energy of root s = 500GeV and a luminosity of L = 500 fb(-1) equally shared between the incoming beam polarisations of Pe-, Pe+ = +/- 0.8, -/+ 0.3. Events are selected in which the top pair decays semi-leptonically and the cross sections and the forward-backward asymmetries are determined. Based on these results, the vector, axial vector and tensorial CP conserving couplings are extracted separately for the photon and the Z(0) component. With the expected precision, a large number of models in which the top quark acts as a messenger to new physics can be distinguished with many standard deviations. This will dramatically improve expectations from e.g. the LHC for electro-weak couplings of the top quark.
Address [Amjad, M. S.; Bilokin, S.; Frisson, T.; Poschl, R.; Richard, F.; Rouene, J.] Ctr Sci Orsay, LAL, BP 34,Batiment 200, F-91898 Orsay, France, Email: poeschl@lal.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000379515400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2766
Permanent link to this record
 

 
Author Abramowicz, H. et al; Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M.
Title Higgs physics at the CLIC electron-positron linear collider Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 7 Pages (down) 475 - 41pp
Keywords
Abstract The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) -> ZH) and WW-fusion (e(+) e(-) -> H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) -> t (t) over barH and e(+) e(-) -> HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
Address [Abramowicz, H.; Benhammou, Y.; Borysov, O.; Grefe, C.; Kananov, S.; Levy, A.; Levy, I.; Lukic, S.; Munker, R. M.; Munnich, A.; Pitters, F.; Redford, S.; Roloff, P.; Rosenblat, O.; Shumeiko, N.; Simon, F.; Strube, J.; Thomson, M. A.; Gonzalez, M. Vogel] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel, Email: philipp.roloff@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000405802500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3215
Permanent link to this record
 

 
Author Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F.
Title Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 1 Pages (down) 381-386
Keywords Charged particle tracking; silicon detectors; solid state devices
Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000349672900025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2140
Permanent link to this record