|   | 
Details
   web
Records
Author Asai, M.; Cortes-Giraldo, M.A.; Gimenez-Alventosa, V.; Gimenez, V.; Salvat, F.
Title The PENELOPE Physics Models and Transport Mechanics. Implementation into Geant4 Type Journal Article
Year 2021 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 9 Issue Pages (down) 738735 - 20pp
Keywords coupled electron-photon transport; Monte Carlo simulation; PENELOPE code system; random-hinge method; Geant4 toolkit
Abstract A translation of the penelope physics subroutines to C++, designed as an extension of the Geant4 toolkit, is presented. The Fortran code system penelope performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, nominally from 50 eV up to 1 GeV. Penelope implements the most reliable interaction models that are currently available, limited only by the required generality of the code. In addition, the transport of electrons and positrons is simulated by means of an elaborate class II scheme in which hard interactions (involving deflection angles or energy transfers larger than pre-defined cutoffs) are simulated from the associated restricted differential cross sections. After a brief description of the interaction models adopted for photons and electrons/positrons, we describe the details of the class-II algorithm used for tracking electrons and positrons. The C++ classes are adapted to the specific code structure of Geant4. They provide a complete description of the interactions and transport mechanics of electrons/positrons and photons in arbitrary materials, which can be activated from the G4ProcessManager to produce simulation results equivalent to those from the original penelope programs. The combined code, named PenG4, benefits from the multi-threading capabilities and advanced geometry and statistical tools of Geant4.
Address [Asai, Makoto] SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: miancortes@us.es;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000742889400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5080
Permanent link to this record
 

 
Author Borys, D. et al; Brzezinski, K.
Title ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue 22 Pages (down) 224002 - 15pp
Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging
Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).
Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000885248200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5416
Permanent link to this record
 

 
Author Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Muñoz, E.; Ros, A.; Viegas, R.; Llosa, G.
Title Joint image reconstruction algorithm in Compton cameras Type Journal Article
Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 67 Issue 15 Pages (down) 155009 - 15pp
Keywords Compton camera; compton imaging; hadron therapy; image reconstruction; LM-MLEM; Monte Carlo simulations; multi-layer compton telescope
Abstract Objective. To demonstrate the benefits of using an joint image reconstruction algorithm based on the List Mode Maximum Likelihood Expectation Maximization that combines events measured in different channels of information of a Compton camera. Approach. Both simulations and experimental data are employed to show the algorithm performance. Main results. The obtained joint images present improved image quality and yield better estimates of displacements of high-energy gamma-ray emitting sources. The algorithm also provides images that are more stable than any individual channel against the noisy convergence that characterizes Maximum Likelihood based algorithms. Significance. The joint reconstruction algorithm can improve the quality and robustness of Compton camera images. It also has high versatility, as it can be easily adapted to any Compton camera geometry. It is thus expected to represent an important step in the optimization of Compton camera imaging.
Address [Roser, J.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Munoz, E.; Ros, A.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Jorge.Roser@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000827830200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5298
Permanent link to this record
 

 
Author Roser, J.; Muñoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J.F.
Title Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 14 Pages (down) 145005 - 17pp
Keywords Compton camera; Compton imaging; hadron therapy; image reconstruction; lm-mlem; monte carlo simulations; multi-layer Compton telescope
Abstract Compton Cameras are electronically collimated photon imagers suitable for sub-MeV to few MeV gamma-ray detection. Such features are desirable to enablein vivorange verification in hadron therapy, through the detection of secondary Prompt Gammas. A major concern with this technique is the poor image quality obtained when the incoming gamma-ray energy is unknown. Compton Cameras with more than two detector planes (multi-layer Compton Cameras) have been proposed as a solution, given that these devices incorporate more signal sequences of interactions to the conventional two interaction events. In particular, three interaction events convey more spectral information as they allow inferring directly the incident gamma-ray energy. A three-layer Compton Telescope based on continuous Lanthanum (III) Bromide crystals coupled to Silicon Photomultipliers is being developed at the IRIS group of IFIC-Valencia. In a previous work we proposed a spectral reconstruction algorithm for two interaction events based on an analytical model for the formation of the signal. To fully exploit the capabilities of our prototype, we present here an extension of the model for three interaction events. Analytical expressions of the sensitivity and the System Matrix are derived and validated against Monte Carlo simulations. Implemented in a List Mode Maximum Likelihood Expectation Maximization algorithm, the proposed model allows us to obtain four-dimensional (energy and position) images by using exclusively three interaction events. We are able to recover the correct spectrum and spatial distribution of gamma-ray sources when ideal data are employed. However, the uncertainties associated to experimental measurements result in a degradation when real data from complex structures are employed. Incorrect estimation of the incident gamma-ray interaction positions, and missing deposited energy associated with escaping secondaries, have been identified as the causes of such degradation by means of a detailed Monte Carlo study. As expected, our current experimental resolution and efficiency to three interaction events prevents us from correctly recovering complex structures of radioactive sources. However, given the better spectral information conveyed by three interaction events, we expect an improvement of the image quality of conventional Compton imaging when including such events. In this regard, future development includes the incorporation of the model assessed in this work to the two interaction events model in order to allow using simultaneously two and three interaction events in the image reconstruction.
Address [Roser, J.; Munoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J. F.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: Jorge.Roser@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000552701600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4481
Permanent link to this record
 

 
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.
Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 68 Issue 14 Pages (down) 144001 - 16pp
Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background
Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.
Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:001022671300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5571
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Bernabeu, J.; Etxebeste, A.; Lacasta, C.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F.
Title Study and comparison of different sensitivity models for a two-plane Compton camera Type Journal Article
Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 63 Issue 13 Pages (down) 135004 - 19pp
Keywords Compton camera imaging; MLEM; Monte Carlo simulations; image quality
Abstract Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with Na-22 sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.
Address [Munoz, Enrique; Barrio, John; Bernabeu, Jose; Etxebeste, Ane; Lacasta, Carlos; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000436390800004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3639
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F.
Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.
Volume 365 Issue Pages (down) 114859 - 10pp
Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement
Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.
Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-4247 ISBN Medium
Area Expedition Conference
Notes WOS:001131902700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5876
Permanent link to this record
 

 
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V.
Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 298 Issue Pages (down) 109091 - 11pp
Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh
Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.
Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:001172840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6077
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S.
Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 267 Issue Pages (down) 108065 - 12pp
Keywords Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics
Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.
Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000678508900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4907
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Mansour, I.; Rivard, M.J.; Ballester, F.; Mainegra-Hing, E.; Thomson, R.M.; Vijande, J.
Title A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations Type Journal Article
Year 2021 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 66 Issue 10 Pages (down) 105014 - 14pp
Keywords Monte Carlo simulations; brachytherapy; low energy physics; photoelectric effect
Abstract Purpose. To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV). Methods. MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties. Results. A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2). Conclusions. In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.
Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000655291500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4847
Permanent link to this record