|   | 
Details
   web
Records
Author Araujo Filho, A.A.; Reis, J.A.A.S.; Ghosh, S.
Title Quantum gases on a torus Type Journal Article
Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 20 Issue 10 Pages (down) 2350178 - 19pp
Keywords Thermodynamic properties; non-Cartesian geometries; grand canonical ensemble; noninteracting and interacting quantum gases; spinless; bosons and fermion particles
Abstract This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.
Address [Araujo Filho, A. A.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000988814200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5553
Permanent link to this record
 

 
Author Centelles Chulia, S.; Trautner, A.
Title Asymmetric tri-bi-maximal mixing and residual symmetries Type Journal Article
Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 35 Issue 35 Pages (down) 2050292 - 15pp
Keywords CP symmetry; CP violation; tri-bi-maximal mixing; asymmetrix texture; grand unification; neutrino masses; neutrino mixing; neutrinoless double beta decay
Abstract Asymmetric tri-bi-maximal mixing is a recently proposed, grand unified theory (GUT) based, flavor mixing scheme. In it, the charged lepton mixing is fixed by the GUT connection to down-type quarks and a T-13 flavor symmetry, while neutrino mixing is assumed to be tri-bi-maximal (TBM) with one additional free phase. Here we show that this additional free phase can be fixed by the residual flavor and CP symmetries of the effective neutrino mass matrix. We discuss how those residual symmetries can be unified with T-13 and identify the smallest possible unified flavor symmetries, namely (Z(13)xZ(13))(sic)D-12 and (Z(13)xZ(13))(sic)S-4. Sharp predictions are obtained for lepton mixing angles, CP violating phases and neutrinoless double beta decay.
Address [Chulia, Salvador Centelles] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000599872300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4648
Permanent link to this record
 

 
Author Valle, J.W.F.
Title Status and implications of neutrino masses: a brief panorama Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 13 Pages (down) 1530034 - 13pp
Keywords Neutrino mixing and oscillations; seesaw mechanism; quark-lepton unification; flavor symmetry; electroweak symmetry breaking; neutrinoless double beta decay; dark matter; inflation
Abstract With the historic discovery of the Higgs boson our picutre of particle physics would have been complete were it nor for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role is elucidating the nature of dark matter and cosmic inflation.
Address Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000353955400002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2211
Permanent link to this record
 

 
Author Oset, E.; Ramos, A.; Garzon, E.J.; Molina, R.; Tolos, L.; Xiao, C.W.; Wu, J.J.; Zou, B.S.
Title Interaction of vector mesons with baryons and nuclei Type Journal Article
Year 2012 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E
Volume 21 Issue 11 Pages (down) 1230011 - 18pp
Keywords Vector-baryon interaction; vectors in medium; J/psi suppression in nuclei
Abstract After some short introductory remarks on particular issues on the vector mesons in nuclei, in this paper, we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei from a modern perspective using the local hidden gauge formalism for the interaction of vector mesons. We present results for the vector-baryon interaction and in particular for the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons, taking also the mixing of these states with pseudoscalars and baryons into account. We then venture into the charm sector, reporting on hidden charm baryon states around 4400 MeV, generated from the interaction of vector mesons and baryons with charm, which have a strong repercussion on the properties of the J/Psi N interaction. We also address the interaction of K* with nuclei and make suggestions to measure the predicted huge width in the medium by means of transparency ratio. The formalism is extended to study the phenomenon of J/psi suppression in nuclei via J/psi photo-production reactions.
Address [Oset, E.; Garzon, E. J.; Xiao, C. W.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: oset@ific.uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-3013 ISBN Medium
Area Expedition Conference
Notes WOS:000310855800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1204
Permanent link to this record
 

 
Author NEXT Collaboration (Jones, B.J.P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1039 Issue Pages (down) 167000 - 19pp
Keywords RF carpets; Ion transport; Neutrinoless double beta decay; Barium tagging
Abstract Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: ben.jones@uta.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000861747900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5372
Permanent link to this record
 

 
Author Hueso-Gonzalez, F.; Casaña Copado, J.V.; Fernandez Prieto, A.; Gallas Torreira, A.; Lemos Cid, E.; Ros Garcia, A.; Vazquez Regueiro, P.; Llosa, G.
Title A dead-time-free data acquisition system for prompt gamma-ray measurements during proton therapy treatments Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1033 Issue Pages (down) 166701 - 9pp
Keywords Data acquisition; Dead time; Pile-up; Digital signal processing
Abstract In cancer patients undergoing proton therapy, a very intense secondary radiation is produced during the treatment, which lasts around one minute. About one billion prompt gamma-rays are emitted per second, and their detection with fast scintillation detectors is useful for monitoring a correct beam delivery. To cope with the expected count rate and pile-up, as well as the scarce statistics due to the short treatment duration, we developed an eidetic data acquisition system capable of continuously digitizing the detector signal with a high sampling rate and without any dead time. By streaming the fully unprocessed waveforms to the computer, complex pile-up decomposition algorithms can be applied and optimized offline. We describe the data acquisition architecture and the multiple experimental tests designed to verify the sustained data throughput speed and the absence of dead time. While the system is tailored for the proton therapy environment, the methodology can be deployed in any other field requiring the recording of raw waveforms at high sampling rates with zero dead time.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000794040600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5318
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Zare, S.; Porffrio, P.J.; Kriz, J.; Hassanabadi, H.
Title Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 838 Issue Pages (down) 137744 - 9pp
Keywords Thermodynamic properties; Black hole; Non-commutative gauge theory; Evaporation process
Abstract In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.
Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000935398000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5483
Permanent link to this record
 

 
Author Hall, O. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tain, J.L.; Tolosa-Delgado, A.
Title beta-delayed neutron emission of r-process nuclei at the N=82 shell closure Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 816 Issue Pages (down) 136266 - 7pp
Keywords beta-delayed neutron emission; r-processimportant
Abstract Theoretical models of beta-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the beta-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of Sn-132 are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P-1n values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at A approximate to 130.
Address [Hall, O.; Davinson, T.; Bruno, C. G.; Griffin, C. J.; Kahl, D.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland, Email: oscar.hall@ed.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000647421500016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4819
Permanent link to this record
 

 
Author n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 804 Issue Pages (down) 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record
 

 
Author Guerrero, C.; Tessler, M.; Paul, M.; Lerendegui-Marco, J.; Heinitz, S.; Maugeri, E.A.; Domingo-Pardo, C.; Dressler, R.; Halfon, S.; Kivel, N.; Koster, U.; Palchan-Hazan, T.; Quesada, J.M.; Schumann, D.; Weissman, L.
Title The s-process in the Nd-Pm-Sm region: Neutron activation of Pm-147 Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 797 Issue Pages (down) 134809 - 6pp
Keywords Nucleosynthesis; Neutron capture; Nuclear reactions; s-process; MACS; Neutron activation
Abstract The Nd-Pm-Sm branching is of interest for the study of the s-process, related to the production of heavy elements in stars. As Sm-148 and Sm-150 are s-only isotopes, the understanding of the branching allows constraining the s-process neutron density. In this context the key physics input needed is the cross section of the three unstable nuclides in the region: Nd-147 (10.98 d half-life), Pm-147 (2.62 yr) and Pm-148 (5.37 d). This paper reports on the activation measurement of Pm-147, the longest-lived of the three nuclides. The cross section measurement has been carried out by activation at the SARAF LiLiT facility using a 56(2) μg target. Compared to the single previous measurement of Pm-147, the measurement presented herein benefits from a target 2000 times more massive. The resulting Maxwellian Averaged Cross Section (MACS) to the ground and metastable states in Pm-148 are 469(50) mb and 357(27) mb. These values are 41% higher (to the ground state) and 15% lower (to the metastable state) than the values reported so far, leading however to a total cross section of 826(107) mb consistent within uncertainties with the previous result and hence leaving unchanged the previous calculation of the s-process neutron density.
Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.] Univ Seville, Seville, Spain, Email: cguerrero4@us.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000488071200026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4161
Permanent link to this record