toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. url  doi
openurl 
  Title Accelerated observers and the notion of singular spacetime Type Journal Article
  Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 35 Issue 5 Pages (up) 055010 - 18pp  
  Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity  
  Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.  
  Address [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424042100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3473  
Permanent link to this record
 

 
Author Magalhaes, R.B.; Crispino, L.C.B.; Olmo, G.J. url  doi
openurl 
  Title Compact objects in quadratic Palatini gravity generated by a free scalar field Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 6 Pages (up) 064007 - 15pp  
  Keywords  
  Abstract We study the correspondence that connects the space of solutions of general relativity (GR) with that of Ricci-based gravity theories (RBGs) of the f(R, Q) type in the metric-affinc formulation, where Q = R(mu nu)R(mu nu). We focus on the case of scalar matter and show that when one considers a free massless scalar in the GR frame, important simplifications arise that allow one to establish the correspondence for arbitrary f (R, Q) Lagrangian. We particularize the analysis to a quadratic f (R, Q) theory and use the spherically symmetric, static solution of Jannis-Newman-Winicour as seed to generate new compact objects in our target theory. We find that two different types of solutions emerge, one representing naked singularities and another corresponding to asymmetric wormholes with bounded curvature scalars everywhere. The latter solutions, nonetheless, are geodesically incomplete.  
  Address [Magalhaes, Renan B.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767103000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5171  
Permanent link to this record
 

 
Author Bambi, C.; Cardenas-Avendano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Wormholes and nonsingular spacetimes in Palatini f(R) gravity Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 6 Pages (up) 064016 - 8pp  
  Keywords  
  Abstract We reconsider the problem of f(R) theories of gravity coupled to Born-Infeld theory of electrodynamics formulated in a Palatini approach, where metric and connection are independent fields. By studying electrovacuum configurations in a static and spherically symmetric spacetime, we find solutions which reduce to their Reissner-Nordstrom counterparts at large distances but undergo important nonperturbative modifications close to the center. Our new analysis reveals that the pointlike singularity is replaced by a finite-size wormhole structure, which provides a geodesically complete and thus nonsingular spacetime, despite the existence of curvature divergences at the wormhole throat. Implications of these results, in particular for the cosmic censorship conjecture, are discussed.  
  Address [Bambi, Cosimo; Rubiera-Garcia, D.] Fudan Univ, Ctr Field Theory & Particle Phys, 220 Handan Rd, Shanghai 200433, Peoples R China, Email: bambi@fudan.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000371742700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2575  
Permanent link to this record
 

 
Author Bejarano, C.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title What is a singular black hole beyond general relativity? Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 6 Pages (up) 064043 - 18pp  
  Keywords  
  Abstract Exploring the characterization of singular black hole spacetimes, we study the relation between energy density, curvature invariants, and geodesic completeness using a quadratic f(R) gravity theory coupled to an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal extensions of general relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordstrm solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a breakdown of the correlations between the finiteness/ divergence of the energy density, the behavior of curvature invariants, and the (in) completeness of geodesics is obtained. We find a variety of configurations with and without wormholes, a case with a de Sitter interior, solutions that mimic nonlinear models of electrodynamics coupled to GR, and configurations with up to four horizons. Our results raise questions regarding what infinities, if any, a quantum version of these theories should regularize.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399146000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3046  
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R. url  doi
openurl 
  Title Nonlinear sigma-models in the Eddington-inspired Born-Infeld gravity Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 6 Pages (up) 064043 - 11pp  
  Keywords  
  Abstract In this paper we consider two different nonlinear sigma-models minimally coupled to Eddington-inspired Born-Infeld gravity. We show that the resultant geometries represent minimal modifications with respect to those found in GR, though with important physical consequences. In particular, wormhole structures always arise, though this does not guarantee by itself the geodesic completeness of those space-times. In one of the models, quadratic in the canonical kinetic term, we identify a subset of solutions which are regular everywhere and are geodesically complete. We discuss characteristic features of these solutions and their dependence on the relationship between mass and global charge.  
  Address [Nascimento, J. R.; Porfirio, P. J.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521099300008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4344  
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R. url  doi
openurl 
  Title Global monopole in Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 6 Pages (up) 064053 - 11pp  
  Keywords  
  Abstract We consider the space-time metric generated by a global monopole in an extension of general relativity (GR) of the form f(R) = R – lambda R-2. The theory is formulated in the metric-affine (or Palatini) formalism, and exact analytical solutions are obtained. For lambda < 0, one finds that the solution has the same characteristics as the Schwarzschild black hole with a monopole charge in Einstein's GR. For lambda > 0, instead, the metric is more closely related to the Reissner-Nordstrom metric with a monopole charge and, in addition, it possesses a wormhole-like structure that allows for the geodesic completeness of the spacetime. Our solution recovers the expected limits when lambda = 0 and also at the asymptotic far limit. The angular deflection of light in this space-time in the weak field regime is also calculated.  
  Address [Nascimento, J. R.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462920100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3966  
Permanent link to this record
 

 
Author Barragan, C.; Olmo, G.J. url  doi
openurl 
  Title Isotropic and anisotropic bouncing cosmologies in Palatini gravity Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 8 Pages (up) 084015 - 15pp  
  Keywords  
  Abstract We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R, R μnu R μnu) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R + aR(2)/R-P + R μnu R μnu/R-P exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.  
  Address [Barragan, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282751900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 362  
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages (up) 084016 - 5pp  
  Keywords  
  Abstract We present a novel approach to modified theories of gravity which consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.  
  Address [Harko, Tiberiu] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China, Email: harko@hkucc.hku.hk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302996100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 996  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Importance of torsion and invariant volumes in Palatini theories of gravity Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 8 Pages (up) 084030 - 11pp  
  Keywords  
  Abstract We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).  
  Address [Olmo, Gonzalo J.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326107300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1630  
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Coupling matter in modified Q gravity Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 8 Pages (up) 084043 - 13pp  
  Keywords  
  Abstract We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.  
  Address [Harko, Tiberiu] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania, Email: t.harko@ucl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448458600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3789  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva