toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Silicon detectors for combined MR-PET and MR-SPECT imaging Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 702 Issue Pages (up) 88-90  
  Keywords PET; Silicon detectors; SPECT  
  Abstract Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.  
  Address [Studen, A.; Cindro, V.; Grosicar, B.; Grkovski, M.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314682300026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1331  
Permanent link to this record
 

 
Author n_TOF Collaboration (Weiss, C. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 799 Issue Pages (up) 90-98  
  Keywords n_TOF facility; Neutron time-of-flight; FLUKA; Neutron cross-section measurement  
  Abstract At the neutron Lime-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.  
  Address [Weiss, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Bergstroem, I.; Calviani, M.; Guerrero, C.; Sabate-Gilarte, M.; Tsinganis, A.; Brugger, M.; Cerutti, F.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Leal-Cidoncha, E.; Losito, R.; Macina, D.; Montesano, S.; Porras, I.; Rubbia, C.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361877300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2392  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 635 Issue 1 Pages (up) 92-102  
  Keywords Cosmic rays; Radio detection; Analysis software; Detector simulation  
  Abstract The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.  
  Address [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany, Email: auger_pc@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289317100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 606  
Permanent link to this record
 

 
Author Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T.T.; Agramunt, J.; Brewer, N.T.; Go, S.; Heideman, J.; Liu, J.; Nishimura, S.; Parkhurst, P.; Phong, V.H.; Rajabali, M.M.; Rasco, B.C.; Rykaczewski, K.P.; Stracener, D.W.; Tain, J.L.; Tolosa-Delgado, A.; Vaigneur, K.; Wolinska-Cichocka, M. url  doi
openurl 
  Title Segmented YSO scintillation detectors as a new beta-implant detection tool for decay spectroscopy in fragmentation facilities Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 937 Issue Pages (up) 93-97  
  Keywords Beta-decay; Implant-beta detector; Radioactive isotopes; Fragmentation  
  Abstract A newly developed segmented YSO scintillator detector was implemented for the first time at the RI-beam Factory at RIKEN Nishina Center as an implantation-decay counter. The results from the experiment demonstrate that the detector is a viable alternative to conventional silicon-strip detectors with its good timing resolution and high detection efficiency for beta particles. A Position-Sensitive Photo-Multiplier Tube (PSPMT) is coupled with a 48 x 48 segmented YSO crystal. To demonstrate its capabilities, a known short-lived isomer in Ni-76 and the beta decay of Co-74 were measured by implanting those ions into the YSO detector. The half-lives and gamma-rays observed in this work are consistent with the known values. The beta-ray detection efficiency is more than 80 % for the decay of Co-74.  
  Address [Yokoyama, R.; Singh, M.; Grzywacz, R.; Keeler, A.; King, T. T.; Brewer, N. T.; Heideman, J.; Rasco, B. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: ryokoyam@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000471139300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4054  
Permanent link to this record
 

 
Author AGATA Collaboration (Soderstrom, P.A. et al); Gadea, A. doi  openurl
  Title Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages (up) 96-109  
  Keywords gamma-ray tracking; AGATA; Monte Carlo simulations; HPGe detectors; Fusion-evaporation reactions  
  Abstract The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.  
  Address [Soderstrom, P. -A.; Nyberg, J.; Al-Adili, A.; Atac, A.; Veyssiere, C.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden, Email: P-A.Soderstrom@physics.uu.se  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 619  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva