toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bernigaud, J.; Blanke, M.; de Medeiros Varzielas, I.; Talbert, J.; Zurita, J. url  doi
openurl 
  Title LHC signatures of tau-flavoured vector leptoquarks Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 127 - 31pp  
  Keywords New Light Particles; Specific BSM Phenomenology; Flavour Symmetries; Theories of Flavour  
  Abstract We consider the phenomenological signatures of Simplified Models of Flavourful Leptoquarks, whose Beyond-the-Standard Model (SM) couplings to fermion generations occur via textures that are well motivated from a broad class of ultraviolet flavour models (which we briefly review). We place particular emphasis on the study of the vector leptoquark Delta(mu) with assignments (3, 1, 2/3) under the SM's gauge symmetry, SU(3)(C) x SU(2)(L) x U(1)(Y), which has the tantalising possibility of explaining both R-K(*) and R-D(*) anomalies. Upon performing global likelihood scans of the leptoquark's coupling parameter space, focusing in particular on models with tree-level couplings to a single charged lepton species, we then provide confidence intervals and benchmark points preferred by low(er)-energy flavour data. Finally, we use these constraints to further evaluate the (promising) Large Hadron Collider (LHC) detection prospects of pairs of tau-flavoured Delta(mu), through their distinct (a)symmetric decay channels. Namely, we consider direct third-generation leptoquark and jets plus missing-energy searches at the LHC, which we find to be complementary. Depending on the simplified model under consideration, the direct searches constrain the Delta(mu), mass up to 1500-1770 GeV when the branching fraction of Delta(mu), is entirely to third-generation quarks (but are significantly reduced with decreased branching ratios to the third generation), whereas the missing-energy searches constrain the mass up to 1150-1700 GeV while being largely insensitive to the third-generation branching fraction.  
  Address [Bernigaud, Jordan; Blanke, Monika] Karlsruhe Inst Technol, Inst Astroparticle Phys IAP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany, Email: jordan.bernigaud@kit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000840379400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5329  
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R. url  doi
openurl 
  Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages (up) 129 - 24pp  
  Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology  
  Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.  
  Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992064600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5560  
Permanent link to this record
 

 
Author Kalliokoski, M.; Mitsou, V.A.; de Montigny, M.; Mukhopadhyay, A.; Ouimet, P.P.A.; Pinfold, J.; Shaa, A.; Staelens, M. url  doi
openurl 
  Title Searching for minicharged particles at the energy frontier with the MoEDAL-MAPP experiment at the LHC Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages (up) 137 - 22pp  
  Keywords Dark Matter at Colliders; Models for Dark Matter; New Gauge Interactions; Specific BSM Phenomenology  
  Abstract The MoEDAL's Apparatus for Penetrating Particles (MAPP) Experiment is designed to expand the search for new physics at the LHC, significantly extending the physics program of the baseline MoEDAL Experiment. The Phase-1 MAPP detector (MAPP-1) is currently undergoing installation at the LHC's UA83 gallery adjacent to the LHCb/MoEDAL region at Interaction Point 8 and will begin data-taking in early 2024. The focus of the MAPP experiment is on the quest for new feebly interacting particles – avatars of new physics with extremely small Standard Model couplings, such as minicharged particles (mCPs). In this study, we present the results of a comprehensive analysis of MAPP-1's sensitivity to mCPs arising in the canonical model involving the kinetic mixing of a massless dark U(1) gauge field with the Standard Model hypercharge gauge field. We focus on several dominant production mechanisms of mCPs at the LHC across the mass-mixing parameter space of interest to MAPP: Drell-Yan pair production, direct decays of heavy quarkonia and light vector mesons, and single Dalitz decays of pseudoscalar mesons. The 95% confidence level background-free sensitivity of MAPP-1 for mCPs produced at the LHC's Run 3 and the HL-LHC through these mechanisms, along with projected constraints on the minicharged strongly interacting dark matter window, are reported. Our results indicate that MAPP-1 exhibits sensitivity to sizable regions of unconstrained parameter space and can probe effective charges as low as 8 x 10 -4 e and 6 x 10 -4 e for Run 3 and the HL-LHC, respectively.  
  Address [Kalliokoski, Matti] Univ Helsinki, Helsinki Inst Phys, Helsinki 00014, Finland, Email: matti.kalliokoski@helsinki.fi;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001232666600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6148  
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Violations of quark-hadron duality in low-energy determinations of alpha(s) Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages (up) 145 - 42pp  
  Keywords The Strong Coupling; Semi-Leptonic Decays; Specific QCD Phenomenology; Chiral Lagrangian  
  Abstract Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.  
  Address [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Antonio.Pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831256400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5303  
Permanent link to this record
 

 
Author Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K. url  doi
openurl 
  Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (up) 146 - 63pp  
  Keywords Specific QCD Phenomenology; Top Quark  
  Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.  
  Address [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000801110800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva