|   | 
Details
   web
Records
Author Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q.
Title Confronting SUSY GUT With Dark Matter, Sparticle Spectroscopy and Muon (g – 2) Type Journal Article
Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages (up) 127 - 9pp
Keywords grand unification; supersymmetry; dark matter; LHC; sparticle spectroscopy
Abstract We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, SO(10) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We identify characteristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to SO(10), giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.
Address [Gomez, Mario E.] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Integradas, Huelva, Spain, Email: mario.gomez@dfa.uhu.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000450940000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3808
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Mitsou, V.A.; Ruiz de Austri, R.; Terron, J.
Title Histogram comparison tools for the search of new physics at LHC. Application to the CMSSM Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 133 - 27pp
Keywords Beyond Standard Model; Supersymmetric Standard Model; Statistical Methods
Abstract We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the comparison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC.
Address [Eugenia Cabrera, Maria; Alberto Casas, J.] UAM, IFT UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: maria.cabrera@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000304148100059 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1053
Permanent link to this record
 

 
Author van Beekveld, M.; Caron, S.; Ruiz de Austri, R.
Title The current status of fine-tuning in supersymmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 147 - 41pp
Keywords Supersymmetry Phenomenology
Abstract In this paper, we minimize and compare two different fine-tuning measures in four high-scale supersymmetric models that are embedded in the MSSM. In addition, we determine the impact of current and future dark matter direct detection and collider experiments on the fine-tuning. We then compare the low-scale electroweak measure with the high-scale Barbieri-Giudice measure. We find that they reduce to the same value when the higgsino parameter drives the degree of fine-tuning. We also find spectra where the high-scale measure turns out to be lower than the low-scale measure. Depending on the high-scale model and fine-tuning definition, we find a minimal fine-tuning of 3-38 (corresponding to O(10-1)%) for the low-scale measure, and 63-571 (corresponding to O(1-0.1)%) for the high-scale measure. We stress that it is too early to conclude on the fate of supersymmetry, based only on the fine-tuning paradigm.
Address [van Beekveld, Melissa; Caron, Sascha] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000512011100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4275
Permanent link to this record
 

 
Author van Beekveld, M.; Beenakker, W.; Caron, S.; Ruiz de Austri, R.
Title The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 154 - 26pp
Keywords Supersymmetry Phenomenology
Abstract Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a similar to 100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Delta m = m(NLSP) – m(LSF) similar to(5 – 50) GeV in the root s = 14 TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb(-1) of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Am 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.
Address [van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 ED Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000375055200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2648
Permanent link to this record
 

 
Author TLEP Design Study Working Group (Bicer, M. et al); Ruiz de Austri, R.
Title First look at the physics case of TLEP Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 164 - 49pp
Keywords e plus -e- Experiments
Abstract The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e(+)e(-) collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.
Address [Bicer, M.] Ankara Univ, Fac Sci, TR-06100 Ankara, Turkey, Email: TLEP3-steering-group@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000330992300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1700
Permanent link to this record