toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Herrero-Brocal, A.; Vicente, A. url  doi
openurl 
  Title The Type-I Seesaw family Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages (up) 060 - 35pp  
  Keywords Lepton Flavour Violation (charged); New Light Particles; Non-Standard Neutrino Properties; Specific BSM Phenomenology  
  Abstract We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.  
  Address [Centelles Chulia, Salvador] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001264784900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6201  
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A. url  doi
openurl 
  Title Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages (up) 063 - 19pp  
  Keywords dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe  
  Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.  
  Address [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365690000063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2479  
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. url  doi
openurl 
  Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
  Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 5 Issue Pages (up) 63 - 56pp  
  Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter  
  Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.  
  Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416908800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3393  
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Rocha-Moran, P.; Vicente, A. url  doi
openurl 
  Title Minimal 3-loop neutrino mass models and charged lepton flavor violation Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 067 - 37pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.  
  Address [Cepedello, Ricardo; Hirsch, Martin; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000565216600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4522  
Permanent link to this record
 

 
Author Aebischer, J.; Brivio, I.; Celis, A.; Evans, J.A.; Jiang, Y.; Kumar, J.; Pan, X.Y.; Porod, W.; Rosiek, J.; Shih, D.; Staub, F.; Straub, D.M.; van Dyk, D.; Vicente, A. url  doi
openurl 
  Title WCxf : An exchange format for Wilson coefficients beyond the Standard Model Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 232 Issue Pages (up) 71-83  
  Keywords High energy physics and computing; Models beyond the standard model  
  Abstract We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved.  
  Address [Aebischer, Jason; Pan, Xuanyou; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany, Email: david.straub@tum.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442190200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3695  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva