Home | << 1 2 3 4 5 >> |
![]() |
De Romeri, V., Miranda, O. G., Papoulias, D. K., Sanchez Garcia, G., Tortola, M., & Valle, J. W. F. (2023). Physics implications of a combined analysis of COHERENT CsI and LAr data. J. High Energy Phys., 04(4), 035–41pp.
Abstract: The observation of coherent elastic neutrino nucleus scattering has opened the window to many physics opportunities. This process has been measured by the COHERENT Collaboration using two different targets, first CsI and then argon. Recently, the COHERENT Collaboration has updated the CsI data analysis with a higher statistics and an improved understanding of systematics. Here we perform a detailed statistical analysis of the full CsI data and combine it with the previous argon result. We discuss a vast array of implications, from tests of the Standard Model to new physics probes. In our analyses we take into account experimental uncertainties associated to the efficiency as well as the timing distribution of neutrino fluxes, making our results rather robust. In particular, we update previous measurements of the weak mixing angle and the neutron root mean square charge radius for CsI and argon. We also update the constraints on new physics scenarios including neutrino nonstandard interactions and the most general case of neutrino generalized interactions, as well as the possibility of light mediators. Finally, constraints on neutrino electromagnetic properties are also examined, including the conversion to sterile neutrino states. In many cases, the inclusion of the recent CsI data leads to a dramatic improvement of bounds.
|
Coloma, P., Esteban, I., Gonzalez-Garcia, M. C., Larizgoitia, L., Monrabal, F., & Palomares-Ruiz, S. (2022). Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT. J. High Energy Phys., 05(5), 037–33pp.
Abstract: Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino nonstandard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.
|
Chu, X. Y., Garani, R., Garcia-Cely, C., & Hambye, T. (2024). Dark matter bound-state formation in the Sun. J. High Energy Phys., 05(5), 045–32pp.
Abstract: The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
|
Chattaraj, A., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2025). Probing conventional and new physics at the ESS with coherent elastic neutrino-nucleus scattering. J. High Energy Phys., 05(5), 064–49pp.
Abstract: We explore the potential of the European Spallation Source (ESS) in probing physics within and beyond the Standard Model (SM), based on future measurements of coherent elastic neutrino-nucleus scattering (CE nu NS). We consider two SM physics cases, namely the weak mixing angle and the nuclear radius. Regarding physics beyond the SM, we focus on neutrino generalized interactions (NGIs) and on various aspects of sterile neutrino and sterile neutral lepton phenomenology. For this, we explore the violation of lepton unitarity, active-sterile oscillations as well as interesting upscattering channels such as the sterile dipole portal and the production of sterile neutral leptons via NGIs. The projected ESS sensitivities are estimated by performing a statistical analysis considering the various CE nu NS detectors and expected backgrounds. We find that the enhanced statistics achievable in view of the highly intense ESS neutrino beam, will offer a drastic improvement in the current constraints obtained from existing CE nu NS measurements. Finally, we discuss how the ESS has the potential to provide the leading CE nu NS-based constraints, complementing also further experimental probes and astrophysical observations.
|
Breso-Pla, V., Falkowski, A., Gonzalez-Alonso, M., & Monsalvez-Pozo, K. (2023). EFT analysis of New Physics at COHERENT. J. High Energy Phys., 05(5), 074–53pp.
Abstract: Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.
|